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Abstract

Supervised and unsupervised classification are common topics in machine learning

in both scientific and industrial fields, which usually involve three tasks: prediction,

exploration, and explanation. False discovery rate (FDR) theory has a close connec-

tion to classical classification theory, which must be employed in a sophisticated way

to achieve good performance in various contexts. The study aims to explore novel

supervised classifiers and unsupervised classification approaches for functional data

and high-dimensional data in genome study by using FDR, respectively. One work

develops a novel classifier for functional data by casting the classification problem into

a multiple testing task, which involves using statistical depth functions. The other

two works essentially deal with p-values or tail-areas by using FDR in the large scale

testing problem. One work proposes a novel algorithm to yield reproducible differen-

tial expression analysis for microarray and RNA-Seq data. The proposed algorithm

combines the cross-validation type subsampling and false discovery rate, where the

p-values obtained from the training data are used to fit a mixture of baseline and

signal distributions by using the EM algorithm, which is in turn used to screen the

significance for the p-values obtained from the testing data. Another work proposes a

novel weighted p-value approach to explore the association between microRNAs and

COPD emphysema severity by regulating the mRNA expressions, while integrating

patient phenotype information. This proposed method can be applied to study the

causality between miRNA and any particular disease, by exploring the precise role of

miRNA in regulating genes.

v



www.manaraa.com

Table of Contents

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

Chapter 1 Supervised Classification for Functional Data . . . . 1

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Background for Functional Depth . . . . . . . . . . . . . . . . . . . . 5

1.3 Multivariate Functional Depth Classifier . . . . . . . . . . . . . . . . 8

1.4 Classical Classification Methods and Depth-Based Classifiers . . . . . 13

1.5 Simulation Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.6 Real Data Application . . . . . . . . . . . . . . . . . . . . . . . . . . 29

1.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

Chapter 2 A Modified Mixture Model Approach to the Large
Scale Multiple Testing Problem . . . . . . . . . . . . . 40

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.2 Identification of Significant Cases and Power Calculations . . . . . . . 44

2.3 Illustrative Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

vi



www.manaraa.com

2.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

Chapter 3 Sparse Regulatory Network Between microRNA
and mRNA By Using Weighted P-value Approach . . 72

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

Chapter 4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

vii



www.manaraa.com

List of Tables

Table 1.1 The mean misclassification rate and the standard deviation (in
parenthesis) (in percentage) for three different priors π1 = (0.2, 0.8),
π2 = (0.5, 0.5) and π3 = (0.8, 0.2) using different data augmen-
tations, where x1 = c(x, x′), x2 = c(x, x′, x(2)), x3 = c(x, x′, x(2), x(3)),
and x4 = c(x, x′, x(2), x(3), x(4)), respectively. The true group
prior probability is π = (0.1, 0.2, 0.7). In case I, π1 is the correct
prior guess but π2 and π3 are biased prior guesses; in case II, π2
is the correct prior guess but π1 and π3 are biased prior guesses.
However, when using the raw and first derivative curves, the
incorrect prior guess has little effect on the classification performance. 23

Table 1.2 The mean misclassification rate and the standard deviation (in
parenthesis), in percentage, for three different priors π1 = (0.1, 0.2, 0.7),
π2 = (1/3, 1/3, 1/3) and π3 = (0.2, 0.7, 0.1) using different data
augmentations, where x1 = c(x, x′), x2 = c(x, x′, x(2)), x3 =
c(x, x′, x(2), x(3)), and x4 = c(x, x′, x(2), x(3), x(4)), respectively.
The true group prior probability is π = (0.1, 0.2, 0.7). In case
I, π1 is the correct prior guess but π2 and π3 are biased prior
guesses; in case II, π1 is the correct prior guess but π2 and π3
are biased prior guesses. However, when using the raw and first
derivative curves, the incorrect prior guess has little effect on the
classification performance. . . . . . . . . . . . . . . . . . . . . . . 27

Table 1.3 Comparison of our method (DB) to the conventional multivari-
ate discriminant analysis by using functional principal compo-
nent analysis to reduce the infinite-dimension functional obser-
vation to a finite-dimension vector of four principal component
scores and depth-based methods. . . . . . . . . . . . . . . . . . . . 27

Table 1.4 µi(t), α(t), α(t) are the same as in subsections 1.5.1 and 1.5.2. . . . 28

Table 1.5 The mean misclassification rate and standard deviation (in paren-
thesis) at various smoothing parameters λ from 10−10 through
10 for four models. Note that the values in the table are in percent. 31

viii



www.manaraa.com

Table 1.6 The confusion matrix of the predicted classes and true classes.
The rows represent the true classes and the columns for the
predicted classes. In each row, the cell values are the mean
classification rate in percent in each possible class. It shows that
our method has inferior performance on classifying the fiber 086
and fiber 112, which reflects the fact that these two groups of
curves are highly similar each other. . . . . . . . . . . . . . . . . . 35

Table 1.7 Misclassification mean rate and standard deviation (in paren-
thesis) in percent for the three real data, that is, the Berkeley
Growth Data (Growth), the Phoneme Data (Phoneme) and the
Forensic Fiber Data (Forensic). Our method is quite competi-
tive among the selected classification methods, and performs the
best for the forensic fiber data. . . . . . . . . . . . . . . . . . . . . 35

Table 2.1 22 most significant genes from 100 sample splits of the prostate
cancer data (with the detection frequency 2 or higher). The
third column indicates the frequency of occurrence for the cor-
responding gene in the 100 splits. The columns med.x, avg.x
and sd.x are the median, mean and standard deviation of tail
area x (as in Equation (2.13)) for each gene computed from 100
randomly chosen verification data sets. . . . . . . . . . . . . . . . . 54

Table 2.2 The frequency of occurrence for pairs of significant genes in 100
verification data sets. . . . . . . . . . . . . . . . . . . . . . . . . . 54

Table 2.3 28 most frequently detected significant variables from 100 sam-
ple split data sets with the tail-area Fdr< 0.1 (detection frequen-
cies 40 or higher). The third column indicates the frequency of
occurrence for the corresponding variable (i) in the 100 cross
validations. The columns med.x, avg.x and sd.x are the median,
mean and standard deviation of the LTA’s x for each variable
computed from 100 randomly chosen verification data sets. . . . . 58

Table 2.4 The simulation parameters for 30 non-null variables. Here 10
values for µc1 were generated from a N(5, 1) distribution, one for
each of the variables 11 to 20 in the treatment group. Similarly,
10 values for µc2 were generated from a N(7, 1) distribution, one
for each of the output variables 21 to 30 in the treatment group. . 61

ix



www.manaraa.com

Table 2.5 26 most frequently detected significant variables from 100 sam-
ple split data sets with the tail-area Fdr< 0.1 (detection fre-
quencies 2 or higher). The third column indicates the frequency
of occurrence for the corresponding variable (i) in the 100 cross
validations. The columns med.x, avg.x and sd.x are the median,
mean and standard deviation of the LTA’s x for each variable
computed from 100 randomly chosen verification data sets. . . . . 62

Table 3.1 33 miRNAs with weight-adjusted p-values (p-values) ≤ 0.05.
p.value is calculated from the linear mixed effect models (3.2)
and (3.3) by using likelihood ratio test. Weight1 and Weight2
are weights following the formula wmiRj = maxk wjk and wmiRj =
Avgk(wjk). Padj1 and Padj2 are adjusted p-values by scaling
p.value by according weight. . . . . . . . . . . . . . . . . . . . . . 80

Table 3.2 Enriched KEGG pathway using 145 top genes regulated by the
33 microRNAs in table 3.1. . . . . . . . . . . . . . . . . . . . . . . 86

x



www.manaraa.com

List of Figures

Figure 1.1 (a). 20 raw curves for two groups in Model I. (b). Smoothed
curves. (c). First derivatives. (d). Second derivatives. . . . . . . . 18

Figure 1.2 First four functional principal component scores of 20 curves
for two groups in Model I. The first two scores account for
about 80% of the variation of the five groups of curves, where
group 1 and group 2 mask each other. However, the third and
four principal component scores separate group 1 and group 2,
though they explain only 12.5% of the total variation. . . . . . . . 19

Figure 1.3 (a). 20 raw curves for two groups in Model II. (b). Smoothed
curves. (c). First derivatives. (d). Second derivatives. . . . . . . . 21

Figure 1.4 First four functional principal component scores of 20 curves for
two groups in Model II. The first two scores account for about
80% of variation of the five groups of curves, where group 1 and
group 2 mask each other. However, the third and four principal
component scores separate the two groups, though they explain
only 12.5% of the total variation. . . . . . . . . . . . . . . . . . . 22

Figure 1.5 (a). 20 raw curves for three groups in Model III. (b). Smoothed
curves. (c). First derivatives. (d). Second derivatives. . . . . . . . 24

Figure 1.6 First four functional principal component scores of 20 curves
for two groups in Model III. The first two scores accounts for
about 81.5% of variation of the three groups of curves, where
group 1 and group 2 mask somehow each other, but separate
from group 3. However, the third and four principal component
scores shows that group 1 and group 2 are quite distinguishable,
though they explain about 9.5% of the total variation. . . . . . . 25

Figure 1.7 (a). 20 raw curves for three groups in Model IV. (b). Smoothed
curves. (c). First derivatives. (d). Second derivatives. . . . . . . . 26

xi



www.manaraa.com

Figure 1.8 First four functional principal component scores of 20 curves for
two groups in Model IV. The first two scores account for about
82.1% of the total variation in the three groups of curves, and
the third and four principal component scores explain about
9.1% of the total variation. It is clear that the four principal
scores can not make the groups as separable as in Model III
since the batch effects add more noise within the groups. . . . . . 28

Figure 1.9 Figure (a), (b), (c), (d) represent the mean misclassification
rates with one standard deviation at various smoothing param-
eters from 10−10 through 10 for Model I, II, III, and IV, respectively. 30

Figure 1.10 (a). 20 raw curves of growth height for girls and boys. (b).
Smoothed curves. (c). First derivatives. (d). Second derivatives. . 32

Figure 1.11 First four functional principal component scores of 20 curves of
growth height for girls and boys. The first two scores account
for about 94.5% of the variation of the five groups of curves,
where group 1 and group 2 are clearly separate from each other. . 32

Figure 1.12 (a). 10 raw curves for each of phonemes “aa”, “ao”, “iy”, “sh”
and “dcl”. (b). Smoothed curves. (c). First derivatives of the
50 curves. (d). Second derivatives of the 50 curves. . . . . . . . . 33

Figure 1.13 First four functional principal component scores for 50 curves
of each five phonemes “aa”, “ao”, “iy”, “sh” and “dcl”. The first
two scores account for about 92% variation of the five groups
of curves, while group 1 and group 2 mask each other. In-
stead, though the third and fourth scores explain merely 6%,
it might provide additional information to discriminate group
1 and group 2 somehow. . . . . . . . . . . . . . . . . . . . . . . . 34

Figure 1.14 Forensic data: 12 blue acrylic fiber absorbance spectra plot.
(a): Raw curves (b): Smoothed curves (c): First derivative (d):
Second derivative . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

Figure 1.15 First four functional principal component scores for 20 curves
of each of the 12 fiber groups. The first two scores account for
about 92.9% of the variation of the 12 groups of curves, and the
third and fourth scores explain merely 6.8%. . . . . . . . . . . . . 37

Figure 1.16 Power function for each of the 12 hypothesis tests. . . . . . . . . . 38

xii



www.manaraa.com

Figure 1.17 CDF’s of depth ratio TXk(Z) under Hk
0 and Hk

a, k = 1, 2, . . . , 12
respectively. The solid CDF is under the alternative hypothesis
and the dotted CDF is under the null hypothesis for each k.
The CDF’s are estimated using the empirical CDF rather than
using the mixture of logit-normal distributions. . . . . . . . . . . 39

Figure 2.1 The histogram of xi (left-tail-area for the observed two sample
t-statistic for genes i = 1, 2, . . . , 6033) from the entire prostate
cancer data set. Superimposed on Figure (a) are the fitted Uni-
form, Beta and the associated mixture distribution obtained
from one particular training split as f̂(x) = 0.851f ∗0 (x)+0.149f ∗1 (x)
where f ∗0 is the Uniform(0, 1) p.d.f and f ∗1 is the Beta(0.417, 0.410)
p.d.f. And on Figure (b) is the empirical null fit adjusted from
the fitted Uniform-Beta mixture as in the equation (2.4) as
f̂(x) = 0.96f̂0(x) + 0.04f̂1(x). . . . . . . . . . . . . . . . . . . . . 52

Figure 2.2 The histogram of xi (left-tail-area for the observed two sam-
ple t-statistic for genes i = 1, 2, . . . , 6033) from a particular
verification split consisting of half of the control and the treat-
ment group respectively. Superimposed on (a) are the fitted
Uniform-Beta and the associated mixture distribution obtained
from the corresponding training split as f̂(x) = 0.622f ∗0 (x) +
0.378f ∗1 (x) where f ∗0 is the Uniform(0, 1) p.d.f and f ∗1 is the
Beta(0.696, 0.736) p.d.f. Figure (b) is the empirical null fit ad-
justed from the fitted Uniform-Beta mixture distribution as in
Equation (2.4) where f̂(x) = 0.966f̂0(x) + 0.034f̂1(x). . . . . . . . 53

Figure 2.3 Parallel coordinate plot for the detected significant genes using
the tail-area Fdr cutoff value q = 0.1. Each tick on the horizon-
tal axis represents a significant gene, and the vertical axis shows
the left tail-area x from the two sample t-statistic obtained in
each of the 100 validation samples. Figure (a) is a full profile
for all of the detected significant genes and Figure (b) is the
plot for the 10 most significantly differentially expressed genes. . . 55

Figure 2.4 Figure 2.4(a) is the entire F-network of 69 significant genes de-
tected at least once in the 100 cross-validation processes with
tail-area Fdr ≤ 0.1. Figure (b) is the sparse F-network created
from Figure (a) by deleting genes with detection frequency 1.
The change of color from blue to red indicates the corresponding
gene expression level changing from significantly lower to sig-
nificantly higher in the cancer group compared to the control
group. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

xiii



www.manaraa.com

Figure 2.5 The mixture model for the p-values using the whole data set.
f(x) = 0.993f ∗0 (x) + 0.007f ∗1 (x) where f ∗0 (x) is Uniform(0, 1)
density, and f ∗1 (x) is the Beta(α = 0.064, β = 1.517) density.
The adjusted mixture model is f(x) = 0.994f0(x) + 0.006f1(x). . 57

Figure 2.6 F-network for the most significant genes appearing more than
70 times in (a) and more than 90 times in part (b). The Fdr
threshold is at 0.01. . . . . . . . . . . . . . . . . . . . . . . . . . . 59

Figure 2.7 The histogram of xi (left-tail-area for the observed two sam-
ple t-statistic for the simulated variables i = 1, 2, . . . , 1000)
from a verification data set consisting of half of the control
and the treatment groups respectively. Superimposed on Fig-
ure (a) are the fitted Uniform, Beta and the associated mixture
distribution obtained from the corresponding training split as
f̂(x) = 0.923f ∗0 (x) + 0.077f ∗1 (x) where f ∗0 is the Uniform(0, 1)
p.d.f and f ∗1 is the Beta(0.341, 0.319) p.d.f. Figure (b) shows
the empirical null fit adjusted from the fitted Uniform-Beta
mixture distribution to f̂(x) = 0.974f̂0(x) + 0.026f̂1(x) as in
the equation (2.4). . . . . . . . . . . . . . . . . . . . . . . . . . . 63

Figure 2.8 Parallel coordinate plot for the detected significant variables
with the tail-area Fdr less than 0.1. Each tick mark on the
horizontal axis represents a significant variable, and the vertical
axis shows the left tail-area x from the two sample t-statistic
obtained from each of the 100 verification splits. Figure (a)
is a full profile for all of the detected significant variables and
Figure (b) is the plot for the 10 most significantly different variables. 64

Figure 2.9 Figure (a) is the F-network plot of 26 significant variables ap-
pearing at least twice in the 100 sample splits by using the
tail-area Fdr≤ 0.1. Figure (b) is the simplified network of Fig-
ure (a) by deleting variables with less than 5 connected edges.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

Figure 2.10 Figure (a) is the power curve comparison and Figure (b) is the
precision curve comparison between the whole data fit/screening
method and the proposed sample splitting method. Here q is
the cutoff point of the local fdr. The solid line represents power
or precision using the whole data fit/screening method and the
dashed line represents the same using the sample splitting method. 65

xiv



www.manaraa.com

Figure 2.11 Figure (a) is the power comparison between the tail-area Fdr
and the local fdr screening used with sample splitting. Figure
(b) is the precision comparison of the same. The dashed line
shows power and precision when the tail-area Fdr was used for
the screening. The solid line represents power and precision
when the local fdr was used for the screening. The probabili-
ties are calculated as a function of the local fdr or the tail-area
Fdr cutoff point q, to obtain the corresponding combined rejec-
tion region R(q) from 100 sample splits as Equations (2.12a) or
(2.12b). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

Figure 2.12 The solid line represents Type I error and the dashed line repre-
sents Type II error as in Equations (2.9) and (2.10). The error
probabilities are calculated as a function of tail-area Fdr cutoff
point q with the rejection region in the Equation (2.12a). . . . . 68

Figure 3.1 Spaghetti plot for log(Lm) with lung regions (slices) for each
subject. Slice 2 is the apex in lung and slice 13 is the bottom
in the lung. Subject 1 to 6 represent patients with COPD and
subject 7 and 8 represent donors without COPD. The spaghetti
plot shows a pattern of random intercept log(Lm) for subjects
and the overall mean log(Lm) for COPD patients is higher than
that for healthy donors. . . . . . . . . . . . . . . . . . . . . . . . 75

Figure 3.2 The assumed biological pathway amongst microRNA, mRNA
and Lm. miRNA is short for microRNA. . . . . . . . . . . . . . . 76

Figure 3.3 A sparse miRNA-mRNA regulation network in association with
COPD. The nodes represent the 33 significant miRNAs, which
are surrounded by their corresponding 5 most associated mR-
NAs in terms of weight wjk. The width of a link indicates the
strength of association between the miRNA and mRNA, that is,
the weight wjk. It shows that several “cliques” of sub-networks
among some miRNAs and mRNAs, which are biologically ben-
eficial to unveil the pathogenesis of COPD. . . . . . . . . . . . . . 82

Figure 3.4 Weight matrix. Rows are 33 significant miRNAs by threshold-
ing the weighted p-values (or p-values) ≤ 0.05. Columns are
758 mRNAs which are the combined top 5 mRNAs that are
most associated with the 397 miRNAs. Each value in the ma-
trix is calculated by the formula wjk for the jth miRNA and
kth mRNA, labeled by the spectrum from white to gray, from
the smallest weight to the largest one. . . . . . . . . . . . . . . . 85

xv



www.manaraa.com

Chapter 1

Supervised Classification for Functional Data1

1.1 Introduction

In the past twenty years, functional data have been increasingly studied theoretically

and functional data analysis has been applied in various fields such as physical science,

genomes, forensic science, economics, and finance. Nowadays functional data analysis

is becoming even more popular because the ubiquity of advanced data-gathering tech-

nology has made high-dimensional data common. With functional data, we observe a

response function Y (t) at an ordered set of measurement points t1, . . . , tn supported

in a compact interval I. Functional data may arise as temporal, spatial, electrical, or

spectral measurements, among other applications. Two common goals of functional

data analysis include (1) estimating the distribution of a functional random variable

and (2) predicting the response related to the functional data. The popular methods

for estimating the density of the functional random variable include nonparametric

or distribution-free approaches based on estimators of the Nadaraya-Watson type.

It is necessary to point out that the concept of a density for the functional random

variable is difficult to define (Ferraty and Vieu, 2002, Hall and Heckman, 2002). (2)

usually refers to functional data smoothing, functional principal component analysis

and functional linear models, all of which have counterparts in multivariate analysis

or generalized linear regression (Ramsay and Silverman, 2005).

Supervised classification for functional data has recently gained popularity in var-

1Chong Ma, David B. Hitchcock, Stephen L. Morgan. To be submitted to Journal of Applied
Statistics
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ious industrial fields such as speech recognition, differential analysis of gene expres-

sions, disease diagnosis in public health, risk identification in finance, and so on.

Penalized discriminant analysis (PDA) (Hastie et al., 1995), considered an early ap-

plication of functional data analysis, cast the classification problem into a logistic

regression framework via optimal scoring. PDA is a penalized version of linear dis-

criminant analysis (LDA), where the within-class covariance in Mahalanobis distance

in PDA is regularized by smoothing the discretized functional observations, in order

to avoid the degeneracy of the inverse within-covariance. Recently, Ferraty and Vieu

(2003) used a functional nonparametric approach for curve discrimination. Their

approach is based on a kernel-type estimator of posterior probability with a tuning

parameter bandwidth h. This approach also has a k−Nearest Neighbors (kNN) ver-

sion that replaces the real-valued tuning parameter h with an integer parameter k

(among a finite set). Recently, Llop et al. (2011) proposed a new nonparametric clas-

sification rule based on a
√
n−consistent nonparametric estimator for the marginal

density function of an order-one stationary process. Ramsay and Silverman (2005)

introduced how functional principal component analysis and canonical correlation

analysis work in classification.

Recently, the notion of depth has become an important tool in classifying high-

dimensional data, especially functional data. The concept of depth was originally

developed for multivariate data, aiming to order them from center outwards, such

that the more central observations have larger depths, and vice versa. Zuo and Ser-

fling (2000a) summarized the general notions of statistical depth functions and pro-

posed the key structural properties that statistical depth functions should satisfy (Liu,

1990). Recently, the concept of depth has been extended to functional data. Fraiman

and Muniz (2001) proposed the integration data depth (ID), which is an integration

of a univariate data depth analogous to Tukey’s half-space depth on the supported

compact domain I. Later, López-Pintado and Romo (2009) proposed the band depth

2
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(BD) and the generalized band depth (GBD). The GBD is closely related to ID, since

MBD can also be considered as an integration of the univariate simplicial depth over

the time points. Recently, Narisetty and Nair (2016) proposed extremal depth (ED)

which is based on the “extreme outlyingness”, as opposed to ID and GBD which con-

sider more the centrality. Not surprisingly, ED is more resistant to functions that are

outlying in small regions of the domain. Obviously, each depth function can be used

to classify new curves by the essential structure properties of depth functions (Zuo

and Serfling, 2000a) including maximality at center, monotonicity relative to deepest

point and vanishing at infinity. Among the depth-based classification methods, the

most straightforward classifier is the maximum depth rule (Ghosh and Chaudhuri,

2005) which assigns a new functional observation to the group within which it has the

largest depth. Besides directly comparing depths in each group, distance-based rules

appear in Cuevas et al. (2007) and López-Pintado and Romo (2006). The concepts of

depth mainly focus on finding the most representative curve and detecting outlying

curves. There are relatively fewer articles that study the distribution of depth for the

purpose of classification.

In this article, we propose a novel method applying the multivariate functional

depth for supervised classification of functional data. Instead of merely using the

univariate functional observations, we propose to augment a univariate functional

observation, creating a (p + 1)-vector of functions by taking derivatives up to the

p−th order. By taking into account the derivatives, we can use the multivariate func-

tional depth to best capture the shapes, amplitude and phase variations of curves in

various groups. As the functional depth is an extension of the multivariate depth,

the multivariate functional depth is a combination of the functional depth and the

multivariate depth. The simplicial band depth (López-Pintado et al., 2014) is essen-

tially a Lebesgue measure of the region where a given multivariate function x(t) is

contained in the simplicial region determined by X1(t), . . . ,Xp+1(t). The simplicial

3
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region is a (p+ 1)-dimension “tunnel” which consists of a convex hull of (p+ 1) ver-

tices at each time point t. The multivariate functional halfspace depth (Claeskens

et al., 2014) is an extension of the integration data depth (Fraiman and Muniz,

2001) which is a weighted average of Tukey’s half-space over the time points on the

domain I. Hlubinka et al. (2015) proposed a modification of the integration data

depth that takes into account the derivatives of smoothed functions. The modi-

fied integration data depth is also essentially a weighted average of integration data

depths involving different order of derivatives, i.e., ID(x;FX) =
∫
D(x(t);FX(t)) dt,

where x = (x(i1), . . . , x(il))′ is a vector of an observed curve and its derivatives,

X = (X(i1), . . . , X(il))′ is the vector of the corresponding functional random vari-

able and its derivatives and FX is the cumulative distribution for X, where the set

of derivative orders is {i1, . . . , il} ∈ {0, . . . , p}. A 2-fold cross-validation is used to

select the optimal weights for the integrated data depth for achieving the minimum

misclassification rate. Rather than considering a data-driven method, we propose

a model-based classifier based on the depth functions. Our model-based classifier is

constructed based on legitimate depth functions, and a smart choice of depth function

can enhance the classification power of our proposed method. In addition, our work is

also motivated by the DD-classifier (Li et al., 2012) which is quite sophisticated and

which achieves an optimal polynomial curve separation in the depth-versus-depth plot

(DD-plot). The DD-classifier is especially for multivariate data and it is of interest

whether if the same theoretical result could also hold for functional data.

The paper is organized as follows. Section 2 briefly reviews some commonly

used depth functions for multivariate data and functional data. The multivariate

functional depths are introduced as well. We propose a novel classification method for

functional data based on multivariate functional depth in Section 3. Section 4 briefly

introduces some conventional supervised classification methods in both multivariate

and functional context which will be compared later to our proposed method in

4
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Section 5 via simulation studies and in Section 6 via real data applications. We give

a conclusion in Section 7 and some acknowledgments in Section 8.

1.2 Background for Functional Depth

1.2.1 Notation

Consider a probability space (Ω,F , P ) where Ω is the space and F is an appropriate

σ algebra on Ω and P is a probability measure. Let I ∈ B(R) be a compact interval,

a stochastic process is a mapping X : (I,Ω) → R such that X(t, ·) is measurable

for every t ∈ I. For notational convenience, denote by X this stochastic process,

and assume it is differentiable up to p times. Denote by C(I)p+1 the collection of

continuous stochastic processes differentiable up to p times and then {X : X(t), t ∈

I} ∈ C(I)p+1. The bold capital letters (e.g. X) are used to represent a vector of

continuous functions (X0, X1, . . . , Xp) where Xi could be a certain derivative of X or

some other transformation of X. The corresponding smaller letters x and x(t) refer

to the observed stochastic trajectory and its specific value at time t. And x and x(t)

are the corresponding observed p+1-variate curves and (p+1)−variate point at time

t. Without loss of generality, we set I = [0, 1].

1.2.2 Depth Functions

The depth function has been proposed for multivariate data for ordering the multi-

variate data from center outward such that the most central datum has the largest

depth and the least central datum has the smallest depth. Zuo and Serfling (2000b)

summarized statistical depth functions in terms of multivariate data and also estab-

lished the desirable structural properties (Liu, 1990) that a legitimate statistical depth

function should satisfy. For functional data, more specifically, univariate functional

data, most depth functions are extensions of multivariate depth functions, with the

caveat that some property that holds for multivariate data may not hold for func-
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tional data. Likewise, the multivariate functional depths are also related to functional

or multivariate depth functions. In this article, we briefly introduce three multivari-

ate functional depths: the multivariate functional halfspace depth (Claeskens et al.,

2014), the multivariate functional h-Mode depth (Cuevas et al., 2007) and the mul-

tivariate functional simplicial band depth (López-Pintado et al., 2014).

Assume that Y ∈ C(I)p+1 with respect to cdf FY , and then let Y =

(Y (0), Y (1), . . . , Y (p))′ be a (p + 1)−variate stochastic process with cdf FY, where

Y (0) = Y and Y (i) is the ith derivative of Y . Consider an arbitrary X ∈ C(I)p+1.

Definition 1.2.2.1. Multivariate Functional Halfspace Depth

Let Z(t) = HD(X(t);FY(t)) = inf
u∈Rp+1,||u||=1

P (u′Y(t) ≥ u′X(t)),X(t) ∈ Rp+1. The

population version of the multivariate functional halfspace depth for an arbitrary X

with respect to FY is

D(X;FY) =
∫ 1

0
Z(t) · w(t) dt, (1.1)

where w(t) is the weight function that may or may not depend on FY (t), t ∈ [0, 1].

The multivariate functional halfspace depth (Claeskens et al., 2014) is a weighted

average of the multivariate Tukey’s halfspace depths over the time points, and the

weight is actually a function of the time t that can be chosen to account for the local

amplitude variability in order to reflect the functional nature of the data. It is essen-

tially a sophisticated integrated data depth, since it is an integration of the weighted

Tukey’s halfspace depths over the domain I = [0, 1]. In this article, we set the weight

function w(t) uniform over the time domain [0, 1]. The finite-sample version for the

multivariate functional halfspace depth as in (1.1) based on Y1, . . . ,YN
i.i.d∼ FY is

D(X;FY,N) =
∫ 1

0
ZN(T ) dt

where ZN(t) = HD(X(t);FY(t),N) = 1
N

min
u∈Rp+1,||u||=1

#{Yn(t), n = 1, . . . , N :

u′Yn(t) ≥ u′X(t)},X(t) ∈ Rp+1

6
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Definition 1.2.2.2. Multivariate Functional h-mode Depth

Let m(X,Y) =
√
||X − Y ||2 + ||X(1) − Y (1)||2 + · · ·+ ||X(p) − Y (p)||2 be the metric

for (p + 1)−variate curves where || · ||2 is the squared Euclidean L2 norm such that

||X(0) − Y (0)||2 =
∫ 1

0 (x(t) − y(t))2 dt. The population version of the multivariate

functional h-mode depth for an arbitrary X with respect to FY is

D(X;FY) = EY[Kh(m(X,Y))] (1.2)

where Kh(t) is a scaled asymmetric kernel such that Kh(t) = 1
h
K( t

h
). Here K is

a right-truncated normal probability density function since the metric m is non-

negative and h is a tuning bandwidth parameter which takes a default value in the

depth.modep function in the fda.usc R package.

The multivariate functional h-mode depth (Cuevas et al., 2007) for X with re-

spect to FY measures how surrounded the (p + 1)−variate set of curves X is in the

(p + 1)-variate stochastic process FY. The finite-sample version for the multivariate

functional h-Mode depth as in (1.2) based on Y1, . . . ,YN
i.i.d∼ FY is

D(X;FY,N) = 1
N

N∑
i=1

Kh(m(X,Yi))

As is well known, the multivariate functional halfspace depth is a type of inte-

grated data depth (Fraiman and Muniz, 2001) which is related to the extreme depth

function proposed by Narisetty and Nair (2016) and the multivariate simplicial depth

function proposed by López-Pintado et al. (2014). It is certain that there are a lot

of statistical depth concepts for functional data; however, in this article, we focus on

the multivariate functional halfspace depth and the h-mode depth, since our method

is built to perform with any legitimate statistical depth function. However, a good

performance in the classification of functional data depends on a smart choice of the

functional depth function.
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1.3 Multivariate Functional Depth Classifier

In a multi-group supervised classification problem, assume we have K independent

groups of functional data in the form of (xi, gi), i = 1, . . . , n, and gi = k for some k ∈

1, . . . , K on the compact domain I (I = [0, 1]). Each group consists of {xk1, . . . , xknk}

i.i.d. with each group member being a realization of an unknown stochastic process

Xk with the cumulative distribution FXk , where n1 + . . .+ nK = N, k = 1, . . . , K.

A statistical depth function measures how central a curve (or a vector of curves) is

with respect to a group of curves (a curve vectors) in terms of an appropriate metric.

Put it in another way, the depths of all groups of curves with respect to a certain

target group reflect the similarity of these groups of curves to that target group. The

larger the depth of a curve to a target group, the more similar the curve is to that

target group. Given a certain target group, the depths of all groups of curves with

respect to that target group can be assumed to follow a mixture model.

Step 1. Calculate depths of all groups of curves to each group 1, 2, . . . , K

by using an appropriate depth function, respectively. Denote depths of curve xi in

each group 1, 2, . . . , K by di1, di2, . . . , diK . For the sake of easy interpretation and

model fitting, we calculate the ratio of depths by dividing dik by the summation of

di1, di2, . . . , diK for each xi, that is, tik = dik
di1+di2+...+diK , k = 1, 2, . . . , K. Therefore,

ti = (ti1, ti2, . . . , tiK)′ is K-dimensional probability vector and its components sum to

one.

8
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Groups︷ ︸︸ ︷
1 2 · · · K

g1 = 1

g2 = 2

g3 = 3

g4 = 4
...

gN = K



d11 d12 · · · d1K

d21 d22 · · · d2K

d31 d32 · · · d3K

d41 d42 · · · d4K

... ... . . . ...

dN1 dN2 . . . dNK



⇒

Groups︷ ︸︸ ︷
1 2 · · · K

t11 t12 . . . t1K

t21 t22 . . . t2K

t31 t32 . . . t3K

t41 t42 . . . t4K
... ... . . . ...

tN1 tN2 . . . tNK



Step 2. The k-th depth ratio tk is assumed to be a K-mixture of logit-normal

distributions, since the k-th depth ratios are calculated from the K groups of curves.

Each component of the K-mixture of the k-th depth ratio tk represents the similarity

of a group of curves with respect to the k-th group. Thus, logit(tk) follows a K-

mixture of Gaussian distributions such that

P (logit(tk)) =
K∑
j=1

πkjφ (logit(tk);µkj, σkj)

where πkj is the mixing proportion such that ∑K
j=1 πkj = 1.

In fact, tk is a univariate random variable in [0, 1]; therefore a mixture of logit-

normal distributions is just a convenient model fitting method which might be not

the best universally. A mixture of Beta distributions or a nonparametric method such

as kernel density estimation could have better model fit in some cases. The reason

for proposing the mixture of logit-normal distributions is convenient for proving that

{T : T < t} is a UMP test in Theorem 1.3.1.

Step 3. Given a new curve Z with unknown group label, we can calculate the

multivariate functional depth of Z in each group and then obtain the depth ratio of

9
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D(Z;FXk) to the overall depth of Z,

T (z) =
(

D(z;FX1)
D(z;FX1) + . . .+D(z;FXK ) , . . . ,

D(z;FXK )
D(z;FX1) + . . .+D(z;FXK )

)

= (TX1(z), . . . , TXK (z))

Intuitively, the larger the depth ratio of Z in a certain group, the more likelihood

it belongs to the according group. We format the multi-group classification problem

into a set of K hypothesis tests,

Hk
0 : Z ∼ FXk vs. Hk

a : Z � FXk

where k = 1, . . . , K and we assume Z must come from a certain group among the K

groups. Thus, in each hypothesis test, either Hk
0 or Hk

a must be correct. Recall that

tk is the observed depth ratio relative to group k. Under Hk
0 , we take TXk(Z) as the

test statistic and let the observed tail area be Γ(tk) = {TXk(Z) : TXk(Z) < tk}, which

is a Uniformly Most Powerful test shown by Theorem 1.3.1 under some assumptions.

Because the true distribution of tk depends on the distribution of K random functions

and the depth function, it is barely possible to find the best fitted model. Though

the mixture of logit-normal is an approximation to the true model that makes the

Theorem 1.3.1 limited, the observed tail area {T : T < t} intuitively makes sense in

that the smaller the depth ratio of Z under Hk
0 , the stronger evidence against Hk

0 .

Storey et al. (2003) connected FDR to classical classification theory, in which he

formulated multiple hypothesis testing as a classification problem by minimizing a

weighted average of false discovery rate (FDR) and false nondiscovery rate (FNR).

The “classification” in that work actually refers to unsupervised classification in which

group labels for subjects are unknown. In this paper, we connect the FDR theory

to supervised classification in which the group labels are known. We propose an M1

score to measure the test’s accuracy for testing Hk
0 by taking the harmonic mean of

the negative predictive value (NPV) and false discovery rate (FDR). The M1 score

10
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depends on the observed tail area Γ(tk). Thus, for the kth hypothesis test,

M1(tk) = 2 · 1
1

NPV(tk) + 1
FDR(tk)

(1.3)

where

NPV(tk) = P (Hk
0|Γ(tk)c) = πkkP (TXk(Z) ≥ tk|Z ∈ FXk)∑K

j=1 πkjP (TXk(Z) ≥ tk|Z ∈ FXj)

FDR(tk) = P (Hk
0|Γ(tk)) = πkkP (TXk(Z) < tk|Z ∈ FXk)∑K

j=1 πkjP (TXk(Z) < tk|Z ∈ FXj)

For each curve, we conduct K hypothesis tests on Hk
0 : Z ∼ FXk versus Hk

0 : Z � FXk ,

k = 1, 2, . . . , K. For easy interpretation, one can take the ratio of the measure of

strength of M1(tk) to the sum of the M1’s, that is,

Q(Z ∼ FXk |Z) = M1(tk)∑K
j=1 M1(tj)

subject to the constraint ∑K
k=1 Q(Z ∼ FXk |Z) = 1. Therefore, the classifier for curve

Z is determined by

arg max
k

Q(Z ∼ FXk |Z) = arg max
k

M1(tk)

FDR is the global false discovery rate (Efron, 2007, Storey, 2007) which is a

measure of the expected rate of false positives to all significant tests, taking into

account all hypothesis tests. From a Bayesian perspective, FDR is a Bayesian sort of

p-value. More specifically, FDR(tk) is the posterior probability under Hk
0 that a curve

with a depth ratio as small or smaller than the observed depth ratio is truly from

group k. A smaller FDR(tk) gives stronger evidence for believing that it comes from

Hk
1. On the other hand, a large FDR(tk) in turn implies the curve is more likely to

belong to Hk
0. Analogously, NPV is a measure of the expected rate of true positives

to all nonsignificant tests, simultaneously considering all hypothesis tests. Specially,

NPV(tk) is a posterior probability under Hk
0 that a curve with a depth ratio as large

or larger than the observed depth ratio is truly from group k. Under Hk
0, either a

11
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large FDR(tk) or large NPV(tk) can be used as a measure of strength of that curve Z

is truly from group k. When both of them are large simultaneously, it shows stronger

evidence that curve Z belongs to group k. Conversely, when either of them is small,

there is less evidence that curve Z belongs to group k.

We define a more general definition of M1 score, denoted Mβ where β is nonneg-

ative. When β = 0, Mβ equals NPV(tk); when β = 1, Mβ = M1. In other words,

one can decide how important the negative predictive value is relative to the false

discovery rate on the measure of strength of evidence that a curve comes from H0.

For simplicity, we choose β = 1 in the following expression:

Mβ(tk) = (1 + β) · NPV(tk)FDR(tk)
βNPV(tk) + FDR(tk)

(1.4)

In later sections, we will explore the effect of the choice of β on the classification

results.

Theorem 1.3.1. Suppose T is the test statistic for hypothesis test H0 : Z ∼ FX versus

H1 : Z � FX . Assume that T |H ∼ (1−H) ·F0 +H ·F1 where H = 0 if Z is truly from

H0 and H = 1 if Z is truly from H1. H ∼ Bernoulli(1 − π0). Assume F0 is a logit-

normal distribution and F1 is a mixture of logit normal distributions where the corre-

sponding densities f0(t) = logit-norm(t;µ0, σ) and f1(t) = ∑r
i=1 γilogit-norm(t;µ1i, σ).

Assuming that µ0 > max
i
µ1i, the uniformly most powerful test is {T : T < t} at the

size α = P (T < t|H0).

Proof. Recall that by the Neyman-Pearson lemma we can have the set of observed

tail areas A(λ) for 0 ≤ λ ≤ 1 formed by

A(λ) =
{
t : π0f0(t)

π0f0(t) + π1f1(t) ≤ λ

}

We will show that the set of observed tail areas A(λ) has the form {T : T < t} in

which t is related to λ. Note that A(λ) can be written as {t : f1(t)
f0(t) ≥ λ}. Since
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f0(t) = 1√
2πσ

1
t(1−t)e

− (logit(t)−µ0)2

2σ2 , f1(t) = ∑r
i=1 γi

1√
2πσ

1
t(1−t)e

− (logit(t)−µ1i)
2

2σ2 , then

f1(t)
f0(t) =

r∑
i=1

γie
µ2

0−µ
2
1i

2σ2 e
µ1i−µ0

2σ2 logit(t) ≥ r ·min
i
γi · e

µ0−max
i
µ1i

2σ2 · e
min
i
µ1i−µ0

2σ2 logit(t) ≥ λ

Note that µ0 > max
i
µ1i ≥ min

i
µ1i, then min

i
µ1i − µ0 < 0. And logit(t) = log

(
t

1−t

)
is

nondecreasing, so for any λ ∈ (0, 1), there exists a λ∗ such that A(λ) = {t : f1(t)
f0(t) ≥

λ} = {t : t < λ∗}. Therefore, under the assumption, the observed tail area has the

form {T : T < t}, and by the Neyman-Pearson Lemma, {T : T < t} is a UMP test

at the size α = P (T < t|H0).

1.4 Classical Classification Methods and Depth-Based Classifiers

In this section, we relate our method to some conventional classification methods in

the multivariate context and pure depth-based classifiers for functional data. In prac-

tice, functional data are discretized curves on a fine mesh that has infinite dimension

theoretically but consists of many closely spaced measurement points. One approach

to classification is to use functional principal component analysis (PCA) to reduce the

infinite-dimensional curves to a finite-dimensional multivariate vectors, for the sake

of applying conventional classification methods in the multivariate context. There

are two approaches to ensuring smooth eigenfunctions during the implementation of

the functional PCA. One is regularized principal component analysis based on the

raw discretized curves, in which we find orthonormal eigenfunctions ξp, p = 1, 2, 3, . . .

to maximize the penalized variance

var(
∫
ξp(t)xi(t) dt)

||ξp||2 + λ
∫
ξ′′p (t)2 dt

subject to the constraints
∫
ξp(t)ξq(t) dt +

∫
D2ξp(t)D2ξq(t) dt = 0, for p 6= q. Here

D2ξ(t) = ξ
′′(t). The other approach is principal component analysis on func-

tional observations which have been smoothed via some appropriate spline smooth-

ing technique. This is more convenient for conducting functional PCA, whose goal
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is to find orthonormal eigenfunctions ξp, p = 1, 2, 3, . . . to maximize the variance

var(
∫
ξp(t)xi(t) dt) subject to the constraints

∫
ξp(t)ξq(t) dt = 0 for p 6= q. The two

functional PCA techniques perform similarly in terms of their impact on classifica-

tion results. In our paper, we use the second one, i.e., PCA on smoothed functional

observations, and assume that functional data are preprocessed properly. In other

words, we assume curve registration and curve centering (subtract the mean curve

from each curve) have been done before performing functional PCA.

The previously proposed distributional depth-based classifiers is built upon the

original functional observations. For the sake of comparison to our method, we carry

out two pure depth-based classifiers, that is, the Distance to the Trimmed Mean

(DS) and the Trimmed Averaged Mean Distance (TAD) classifiers (López-Pintado

and Romo, 2006), which is constructed on the generalized band depth. Both of the

functional PCA and pure depth-based classification methods will be described in

following.

1.4.1 Functional Principal Component Analysis (PCA) in Classification

Functional principal component analysis is used to reduce infinite-dimensional curves

into conventional multivariate vectors composed of a set of appropriate finite-

dimensional principal component scores that accounts for most of the variation among

the curves. Assume that the functional observations are preprocessed by using an

appropriate smoothing technique. In this paper, we apply B-spline smoothing to pre-

process the discretized functional observations, in which the regularization parameter

is determined by the generalized cross-validation method and the penalized term is

the fourth derivative of the curves. We employ the functional PCA technique to con-

vert functional observations into a number of principal component scores so that the

components account for at least 90% of the total variation in the curves. Our study

used the first four principal component scores, which usually dominate the overall
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variation of functional data in our study, though the number of principal component

scores selected usually depends on the particular functional data set. Finally, we cast

the classification problem for functional data as a classification task for the resulting

multivariate data. We conduct functional principal component analysis as follows.

Step 1. Split the whole functional observations into a training set

{(xitrain, g
i
train), i = 1, 2, . . . , n} and a test set {(xjtest, g

j
test), j = 1, 2, . . . ,m}. For all of

the curves, subtract the curves from the mean curve x̄train in the training set. Thus,

the training set and test set in the functional PCA study yield {(x̃itrain, g
i
train), i =

1, 2, . . . , n} and {(x̃jtest, g
j
test), j = 1, 2, . . . ,m} where x̃itrain = xitrain − x̄train and

x̃jtest = xjtest − x̄train.

Step 2. Based on the training set, calculate the first four principal compo-

nent weight functions ξ1, ξ2, ξ3, ξ4 which are orthonormal. Convert the curves in

the training and test sets into their corresponding multivariate vectors, which con-

sist of a vector of four principal component scores. That is, x̃ is represented by

y = (
∫
x̃ξ1,

∫
x̃ξ2,

∫
x̃ξ3,

∫
x̃ξ4)′. Here x̃ refers to an arbitrary curve in training and

test sets and
∫
x̃ξp =

∫
τ x̃(t) · ξp(t) dt, p = 1, 2, 3, 4.

Step 3. Apply the conventional classification methods in the multivariate con-

text including linear discriminant analysis (LDA), quadratic discriminant analysis

(QDA), generalized linear model (GLM), support vector machine (SVM), neural net-

work (NNET), mixture discriminant analysis and flexible discriminant analysis (FDA)

(Friedman et al., 2001), respectively. Based on the multivariate vectors of principal

component scores, obtain the estimates of the group means and variance-covariance

matrices from the training set, which are used to predict the group labels on the test

set. These methods serve as standards of comparison to our method.
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1.4.2 Depth-Based Classifiers

The pure depth-based classifiers used here are the Distance to the Trimmed Mean

(DS) and the Trimmed Weighted Averaged Distance (TAD) (López-Pintado and

Romo, 2006), which is built upon the generalized band depth defined as follows.

Definition 1.4.2.1. Generalized Band Depth

Let Y1, Y2, . . . , YN
i.i.d∼ FY and X ∼ FX . Denote by S(j) = E[λr(A(X;Yi1 , Yi2 . . . , Yij))]

where A(X;Yi1 , Yi2 , . . . , Yij) = {t ∈ I : min
k=1,...,j

Yik(t) ≤ X(t) ≤ max
k=1,...,j

Yik(t)} and

λr(A(X;Yi1 , Yi2 , . . . , Yij)) = λ(A(X;Yi1 , Yi2 , . . . , Yij))/λ(I). The generalized band

depth is defined by

D(X;FY ) =
J∑
j=2

S(j)(X;FY ) (1.5)

The sample version of S(j)(X;FY ) is

S
(j)
N (x) =

(
N

j

)−1 ∑
1≤i1<...<ij≤N

λ
(
t ∈ I : min

k=1,...,j
yik(t) ≤ x(t) ≤ max

k=1,...,j
yik(t)

)

Note λ
(
t ∈ I : min

k=1,...,j
yik(t) ≤ x(t) ≤ max

k=1,...,j
yik(t)

)
=
∫
I I(y(1)(t) ≤ x(t) ≤ y(j)(t) dt,

is essentially the integrated univariate simplicial depth where I(A) is the indicator

function such that I(A) = 1 if event A is satisfied and zero otherwise. The sample

version of the generalized band depth is a U -statistic and has some good properties

such as consistency (Liu, 1990, Zuo and Serfling, 2000b). However, calculating the

combinatorial sample statistics for each observed curve leads to extensive computa-

tions as complex as O(nJ). For the convenience of computation, we use the default

setting of J = 2.

The Distance to the Trimmed Mean (DS) classifier calculates the distance from the

new functional observation to the trimmed means of each group, and then classifies it

to the group which is closest to the new curve in terms of the calculated distance. The

trimmed mean in each group is the average of a proportion of the deepest curves in

that group. Analogously, the Trimmed Weighted Averaged Distance (TAD) classifier
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calculates the distance from a new functional observation to each group as a weighted

average of distances to a proportion of the deepest curves in that group, where the

weights are determined by those group members’ depths in that group, and then

classifies the new curve to the group which is closest to the new functional observation

in terms of the weighted average distance.

1.5 Simulation Study

In this section we conduct two simulation studies to investigate the performance for

our method by comparing it to classification based on different statistical depth meth-

ods. Because our proposed method is flexible for depth methods, for simplicity, we

propose to use the multivariate functional Fraiman and Muniz (FM) depth function

and the multivariate functional h-mode depth function. Simulation 1 involves two

groups for classification and simulation 2 consists of three groups. For each simula-

tion study, we randomly generate a data set from each of the main effect curve with

Ornstein-Uhlenbeck process error. Moreover, the generated data are contaminated

with some batch effects. In reality, often functional data are repeatedly measured

using different equipment in different labs in forensic analysis, resulting in such batch

effects the data. Similarly, mRNA gene expressions may be observed at different

times or locations. In each simulation, we assign different prior probabilities on the

group membership and investigate the robustness of our proposed method.

The simulation study shows that our method performs best by using the multi-

variate functional h-mode depth with respect to a bivariate functional observation

composed of the raw curve and its first derivative, compared to the functional PCA

and pure depth-based classification approaches proposed in section 4.
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1.5.1 Simulation 1. Binary Classification

Model I. Without Batch Effects

Case I. Consider a binary group classification where the classes have unequal group

sizes. From the Bayesian perspective, this is tantamount to the prior probabilities

of group 1 and group 2 being different. Here, assume that the prior probabilities

of x1 and x2 are π = (0.2, 0.8). The simulation is conducted as follows. Randomly

generate 40 curves from X1 and 160 curves from X2. Conduct 100 cross-validations

to investigate the performance of our proposed method. In each cross-validation,

randomly select 30 and 120 curves from X1 and X2 accordingly, which constitute the

training data set, and the testing data consist of the rest. We consider three scenarios

for specifications of prior probabilities, which are π1 = (0.2, 0.8), π2 = (0.5, 0.5) and

π3 = (0.8, 0.2), respectively.
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Figure 1.1: (a). 20 raw curves for two groups in Model I. (b). Smoothed curves. (c).
First derivatives. (d). Second derivatives.
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Figure 1.2: First four functional principal component scores of 20 curves for two
groups in Model I. The first two scores account for about 80% of the variation of
the five groups of curves, where group 1 and group 2 mask each other. However, the
third and four principal component scores separate group 1 and group 2, though they
explain only 12.5% of the total variation.

Case II. Consider a binary group classification where the classes have equal group

sizes. Essentially, we assume that the two groups have equal prior probability. The

simulation is realized as follows. Randomly generate 100 curves from x1 and x2

respectively. Conduct 100 cross-validations to investigate the performance of our

proposed method, where each cross-validation randomly splits the whole data into

training and testing data having equal sample sizes. More specifically, both the

training and testing data have 50 curves from x1 and 50 curves from x2. Consider

the same three scenarios for specifications of prior probabilities as in Case I. Our

simulated curves follow the model:

xij(t) = µi(t) + εj(t) i = 1, 2; j = 1, . . . , ni (1.6)
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where

µ1(t) = 0.4φ
(
t− 0.52
0.125

)
+ 0.6φ

(
t− 0.75
0.224

)
(1.7a)

µ2(t) = 0.4φ
(
t− 0.35
0.141

)
+ 0.6φ

(
t− 0.73

0.1

)
(1.7b)

ε(t) = 10
∫ t

0
e−(t−s) dWs (1.7c)

ε(t) is the stationary Ornstein-Uhlenbeck process with mean α = 0, decay-rate

(growth-rate) β = 1 and noise variation σ = 10. Ws is the Wiener process with

normally distributed increments.

Model II. With Batch Effects

Case I. Consider a binary group classification for a scenario of unequal group sizes,

where each group is contaminated with different batch effects. This reflects that,

in practice, data are obtained from different sources such as different hospitals or

laboratories. Again, under this case, we assume that the prior probabilities of the

two groups are different. The simulation process is the same as Case I in Model I,

except that each group is randomly contaminated with one of three different batch

effects with equal probability. The nature of the batch effects is explained below.

Case II. Consider a binary group classification for a scenario of equal group sizes,

where each group is also contaminated with different batch effects. Under this case,

we assume that the prior probabilities of the two groups are equal. The simula-

tion process is the same as Case II in Model I, except that each group is randomly

contaminated with one of three different batch effects, with equal probability.

The model for the data containing batch effects (which are denoted α(t)) is:

xij(t) = µi(t) + α(t) + εj(t) (1.8)

where µi(t) and εj(t) are the same as in Model I Case I. α(t) is chosen at random
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from a set of possible batch effects:

α(t) =



sin(t+ U11) log(t+ U12) w.p. 1/3

−U21t
2 + U22t w.p. 1/3

φ( t−U31
0.316 ) + U32 w.p. 1/3

(1.9)

where U21 ∼ U(0.9, 1), U22 ∼ U(0.8, 0.9), U11 ∼ U(−0.02, 0.02), U12 ∼

U(0.01, 0.02),U31 ∼ U(0.475, 0.525) and U32 ∼ U(−0.3,−0.2). Here U(a, b) repre-

sents the continuous uniform distribution between a and b.
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Figure 1.3: (a). 20 raw curves for two groups in Model II. (b). Smoothed curves. (c).
First derivatives. (d). Second derivatives.

1.5.2 Simulation 2. Multi-Group Classification

Model III. Without Batch Effects

Case I. Consider a three-group classification where the classes have unequal group

sizes. We assume that the prior probabilities of three groups are π = (0.1, 0.2, 0.7).
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Figure 1.4: First four functional principal component scores of 20 curves for two
groups in Model II. The first two scores account for about 80% of variation of the five
groups of curves, where group 1 and group 2 mask each other. However, the third
and four principal component scores separate the two groups, though they explain
only 12.5% of the total variation.

The simulation is conducted as follows. Randomly generate 40, 80 and 280 curves

from X1, X2 and X3, respectively. Conduct 100 cross-validations to investigate the

performance of our proposed method. In each cross-validation, randomly select 30,

60 and 210 curves from X1, X2 and X3, constituting the training data, and the rest

constitutes the testing data. In order to study the effect of the specification of prior

probability for each group on classification performance, we propose three different

specifications of prior probabilities, which are π1 = (0.1, 0.2, 0.7), π2 = (1
3 ,

1
3 ,

1
3), and

π3 = (0.2, 0.7, 0.1).

Case II. Consider a three-group classification with equal group sizes. Assume that

the prior probabilities of three groups are π = (1
3 ,

1
3 ,

1
3). In the simulation, randomly

generate 100 curves for each of three groups, that is, X1, X2 and X3, respectively.

Conduct 100 cross-validations to investigate the performance of our proposed

method. In each cross-validation, randomly select 50 curves from X1, X2 and X3
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Table 1.1: The mean misclassification rate and the standard deviation (in parenthesis)
(in percentage) for three different priors π1 = (0.2, 0.8), π2 = (0.5, 0.5) and π3 =
(0.8, 0.2) using different data augmentations, where x1 = c(x, x′), x2 = c(x, x′, x(2)),
x3 = c(x, x′, x(2), x(3)), and x4 = c(x, x′, x(2), x(3), x(4)), respectively. The true group
prior probability is π = (0.1, 0.2, 0.7). In case I, π1 is the correct prior guess but π2
and π3 are biased prior guesses; in case II, π2 is the correct prior guess but π1 and
π3 are biased prior guesses. However, when using the raw and first derivative curves,
the incorrect prior guess has little effect on the classification performance.

FM depth h-mode depth
π1 π2 π3 π1 π2 π3

Model I Case I x1 5.38(0.13) 5.03(0.12) 10.01(0.29) 0.2(0.13) 0.25(0.12) 0.52(0.29)
x2 3.54(0.83) 2.9(0.63) 5.49(1.7) 1.39(0.83) 1.23(0.63) 2.55(1.7)
x3 5.61(6) 3.41(4.18) 5.37(4.98) 24.15(6) 15.42(4.18) 21.97(4.98)
x4 6.3(2.35) 3.89(2.86) 5.98(2.42) 46.31(2.35) 38.05(2.86) 46.45(2.42)

Case II x1 8.8(0.13) 5.89(0.1) 9.11(0.2) 0.28(0.13) 0.26(0.1) 0.41(0.2)
x2 5.19(0.91) 3.31(0.44) 5.24(0.78) 1.96(0.91) 1.16(0.44) 1.86(0.78)
x3 5.96(1.87) 3.88(2.13) 5.53(2.3) 41.23(1.87) 35.26(2.13) 41.64(2.3)
x4 6.3(0.8) 4.05(1.78) 5.72(0.79) 49.78(0.8) 49.27(1.78) 49.89(0.79)

Model II Case I x1 4.84(0) 4.44(0) 8.74(0.67) 0(0) 0(0) 0.2(0.67)
x2 2.78(0.98) 2.6(1.25) 4.9(1.96) 0.54(0.98) 0.92(1.25) 2.02(1.96)
x3 3.46(3.9) 2.58(5.72) 4.22(9.01) 14.42(3.9) 13.18(5.72) 21.18(9.01)
x4 4.48(2.12) 3.12(6.7) 4.58(8.11) 20.9(2.12) 31.9(6.7) 51.68(8.11)

Case II x1 14.03(0.66) 11.92(0.17) 15.58(0.38) 0.54(0.66) 0.03(0.17) 0.07(0.38)
x2 8.63(2.08) 7.19(1.09) 9.91(2.76) 2.28(2.08) 0.87(1.09) 2.97(2.76)
x3 8.49(6.01) 6.35(5.52) 9.7(7.47) 23.86(6.01) 19.21(5.52) 28.28(7.47)
x4 9.21(3.88) 7.24(5.33) 11.12(3.22) 41.95(3.88) 39.09(5.33) 47.67(3.22)

constituting the training data and the rest constitutes the testing data. Analogous

to Case I, we propose three scenarios for specifications of prior probabilities that are

the same as π1, π2 and π3 in Case I for studying the robustness of our method to

different priors. The simulated curves follow the model:

xij(t) = µi(t) + εj(t), i = 1, 2, 3; j = 1, . . . , ni, (1.10)

where µ1(t), µ2(t), ε(t) are the same as (1.7a), (1.7b), (1.7c) in Model I and µ3(t) =

300t6(1− t)2.

Model IV. With Batch Effects

Case I. Analogously to Case I in Model III, the simulation process is the same,

except that the three groups of curves are randomly contaminated with three
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Figure 1.5: (a). 20 raw curves for three groups in Model III. (b). Smoothed curves.
(c). First derivatives. (d). Second derivatives.

different batch effects α1, α2 and α3, which are the same as Case I in Model II.

Case II. Analogously to Case II in Model III, the simulation process is the same,

except that the three groups of curves are randomly contaminated with three

different batch effects α1, α2 and α3, which are the same as Case II in Model II. The

simulated curves follow the model:

xij(t) = µi(t) + αj(t) + εj(t), i = 1, 2, 3; j = 1, . . . , ni, (1.11)

where µ1(t), µ2(t), µ3(t) and ε(t) are the same as above Case I, and α(t) is (1.9) in

Model II.

The enriched simulation study illustrates the performance of our method by using

each of the multivariate functional Fraiman and Muniz (FM) depth and the multi-
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Figure 1.6: First four functional principal component scores of 20 curves for two
groups in Model III. The first two scores accounts for about 81.5% of variation of
the three groups of curves, where group 1 and group 2 mask somehow each other,
but separate from group 3. However, the third and four principal component scores
shows that group 1 and group 2 are quite distinguishable, though they explain about
9.5% of the total variation.

variate functional h-mode depth with respect to different curve vectors. It is shown

that our method has competitive performance in classification when using the mul-

tivariate functional h-mode depth with respect to a bivariate functional observation

vector consisting of the raw curve and its first derivative. Moreover, we compare our

method (DB) to the conventional multivariate discriminant analysis that uses the

functional principal component analysis to reduce the infinite-dimension functional

observation to a finite-dimension vector of four principal component scores and the

aforementioned pure depth-based methods. The conventional multivariate discrimi-

nant analysis methods used in our comparison includes linear discriminant analysis

(LDA), quadratic discriminant analysis (QDA), generalized linear model (GLM), sup-

port vector machine (SVM), neural network (NNET), mixture discriminant analysis

and flexible discriminant analysis (FDA) (Friedman et al., 2001), respectively. The

depth-based methods includes the Distance to trimmed mean (DS) and the Trimmed

25



www.manaraa.com

 

 

0 0.2 0.4 0.6 0.8 1

−
2

0
2

4
6

(a)

 

 

0 0.2 0.4 0.6 0.8 1

−
2

0
2

4
6

(b)

 

0 0.2 0.4 0.6 0.8 1

−
40

−
20

0
20

40

(c)

 

0 0.2 0.4 0.6 0.8 1

−
24

00
−

12
00

0
12

00
24

00

(d)

Figure 1.7: (a). 20 raw curves for three groups in Model IV. (b). Smoothed curves.
(c). First derivatives. (d). Second derivatives.

Weighted Averaged Distance (TAD) based on the generalized band depth (López-

Pintado and Romo, 2009). Table 1.3 displays that our method (DB) has lower mis-

classification than the other competitors in classification.

1.5.3 Sensitivity Analysis

We conducted a sensitivity analysis to understand how our proposed algorithm in

Section 1.3 varies in terms of the classification performance based on using different

smoothing parameters for preprocessing the functional data. We also investigated the

effect of using various β, which quantifies the relative weight of NPV(t) to FDR(t)

in the score function Mβ. In the simulation subsections 1.5.1 and 1.5.2, we explored

the proposed algorithm in four models, each of which involved using both equal

and unequal prior probabilities to investigate the classification performance. In this

sensitivity analysis study, we merely considered using the equal prior probability for

26



www.manaraa.com

Table 1.2: The mean misclassification rate and the standard deviation (in parenthe-
sis), in percentage, for three different priors π1 = (0.1, 0.2, 0.7), π2 = (1/3, 1/3, 1/3)
and π3 = (0.2, 0.7, 0.1) using different data augmentations, where x1 = c(x, x′),
x2 = c(x, x′, x(2)), x3 = c(x, x′, x(2), x(3)), and x4 = c(x, x′, x(2), x(3), x(4)), respec-
tively. The true group prior probability is π = (0.1, 0.2, 0.7). In case I, π1 is the
correct prior guess but π2 and π3 are biased prior guesses; in case II, π1 is the
correct prior guess but π2 and π3 are biased prior guesses. However, when using
the raw and first derivative curves, the incorrect prior guess has little effect on the
classification performance.

FM depth h-mode depth
π1 π2 π3 π1 π2 π3

Model III Case I x1 4(0.1) 3.94(0.15) 5.84(0.09) 0.12(0.1) 0.18(0.15) 0.12(0.09)
x2 1.99(0.5) 1.89(0.48) 2.91(1.25) 1.33(0.5) 1.03(0.48) 3.72(1.25)
x3 2.11(2.52) 2.12(2.58) 3.32(6.76) 12.92(2.52) 12.29(2.58) 20.64(6.76)
x4 2.56(1.11) 2.56(2.68) 3.99(5.28) 28.77(1.11) 41.3(2.68) 68.77(5.28)

Case II x1 6.14(0.07) 5.08(0.08) 8.45(0.07) 0.16(0.07) 0.17(0.08) 0.18(0.07)
x2 2.67(0.57) 2.66(0.35) 4.61(0.74) 1.49(0.57) 1.22(0.35) 1.63(0.74)
x3 2.89(4.83) 2.83(2.79) 5.29(6.74) 20.16(4.83) 14.92(2.79) 25.98(6.74)
x4 3.4(3.31) 3.26(2.91) 6.16(1.91) 59.55(3.31) 50.7(2.91) 64.15(1.91)

Model IV Case I x1 2.98(0) 2.29(0) 4.33(0.4) 0(0) 0(0) 0.2(0.4)
x2 0.81(1.36) 1.01(1.29) 1.8(1.54) 2.57(1.36) 1.57(1.29) 3.05(1.54)
x3 1.38(3.04) 1.25(3.8) 2.04(5.59) 15.16(3.04) 13.28(3.8) 24.32(5.59)
x4 1.89(1.69) 1.74(4.59) 2.7(5.74) 29.31(1.69) 39.5(4.59) 65.95(5.74)

Case II x1 6.21(0.08) 5.54(0.09) 9.13(0.11) 0.11(0.08) 0.12(0.09) 0.14(0.11)
x2 2.62(0.59) 2.44(0.43) 4.45(0.82) 1.15(0.59) 0.88(0.43) 1.55(0.82)
x3 2.57(5.17) 2.6(2.96) 4.44(5.15) 22.26(5.17) 15.65(2.96) 23.83(5.15)
x4 2.97(3.17) 3.04(2.66) 5(2.29) 61.48(3.17) 48.75(2.66) 62.92(2.29)

Table 1.3: Comparison of our method (DB) to the conventional multivariate dis-
criminant analysis by using functional principal component analysis to reduce the
infinite-dimension functional observation to a finite-dimension vector of four princi-
pal component scores and depth-based methods.
Scenario Model Group Batch DB LDA QDA GLM SVM NNET MDA FDA DS TAD
Case I Model I 2 No 0.2(0.13) 1.05(0.63) 1.12(0.61) 1.58(0.79) 1.53(0.69) 1.68(0.97) 1.11(0.62) 1.05(0.63) 12.23(7.19) 18.76(3.33)

Model II 2 Yes 0(0) 0.42(1.15) 0.46(0.94) 0.6(1.46) 1.3(1.89) 0.6(1.62) 0.5(1.18) 0.42(1.15) 26.32(8.65) 21.98(6.3)
Model III 3 No 0.12(0.1) 1.53(0.68) 1.73(0.74) 1.96(0.79) 3.4(0.82) 2.15(1.26) 1.59(0.72) 1.53(0.69) 18.03(3.65) 17.67(2.61)
Model IV 3 Yes 0(0) 2.08(1.24) 2.16(1.17) 2.51(1.33) 3.67(1.66) 2.82(1.43) 1.96(1.14) 2.08(1.24) 21.55(5.77) 22.29(4.78)

Case II Model I 2 No 0.26(0.1) 0.58(0.23) 0.66(0.26) 1.22(0.71) 1.07(0.42) 1.17(0.6) 0.62(0.29) 0.58(0.23) 12.31(6.84) 19.14(6)
Model II 2 Yes 0.03(0.17) 0.27(0.55) 0.42(0.61) 1.37(1.23) 0.8(0.94) 1.08(0.9) 0.33(0.59) 0.27(0.55) 20.4(10.08) 25.71(8.84)
Model III 3 No 0.17(0.08) 4.38(1.86) 4.49(1.78) 4.91(1.61) 4.86(1.69) 5.15(1.77) 4.59(1.81) 4.38(1.86) 19.43(4.3) 22.17(3.96)
Model IV 3 Yes 0.12(0.09) 7.66(3.17) 7.8(3.3) 8.06(3.17) 8.39(3.37) 8.4(3.17) 7.79(3.27) 7.66(3.17) 21.19(4.16) 24.73(3.71)
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Figure 1.8: First four functional principal component scores of 20 curves for two
groups in Model IV. The first two scores account for about 82.1% of the total variation
in the three groups of curves, and the third and four principal component scores
explain about 9.1% of the total variation. It is clear that the four principal scores can
not make the groups as separable as in Model III since the batch effects add more
noise within the groups.

the classification of each group in the algorithm. Model I and II illustrate the binary

classification for functional data with and without batch effects, whereas Model III

and IV involve multi-group classification for functional data with and without batch

effects, respectively. The structure of the four models are displayed in Table 1.4.

Table 1.4: µi(t), α(t), α(t) are the same as in subsections 1.5.1 and 1.5.2.

Scenario Groups Batch Effect Model
Model I Binary No Xi(t) = µi(t) + ε(t), i = 1, 2
Model II Binary Yes Xi(t) = µi(t) + α(t) + ε(t), i = 1, 2
Model III Multi-Group No Xi(t) = µi(t) + ε(t), i = 1, 2, 3
Model IV Multi-Group Yes Xi(t) = µi(t) + α(t) + ε(t), i = 1, 2, 3

In each model, we repeated the sensitivity analysis 100 times, in which we sim-

ulated 100 functional data for each group based on the corresponding setting. For

each simulated data, we conducted 100 cross-validations by using the proposed classi-

fication algorithm, where we randomly split the whole functional data into a training
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and testing data, both of which consisted of half of the functional data from each

group. Moreover, for each cross-validation, instead of using the optimal smoothing

parameter, we preprocessed all functional data using the B-spline smoothing method

by varying the smoothing parameters from 10−10 through 10 by increasing one mag-

nitude each time. Meanwhile, in order to explore how the different score function Mβ

influences the classification performance, we also changed β, the relative weight of

NPV(t) to FDR(t), from 0 through 2.

The sensitivity study shows that there is no change on the classification perfor-

mance when the value of β in the score function Mβ varies from 0 through 2. This fact

actually proves that Mβ is, in a sense, a robust classification criterion in both binary

and multi-group classification. Nonetheless, Figure 1.9 displays the mean misclassi-

fication rate (with one standard deviation) for the 100 repeated simulations at each

smoothing parameter for each model. The mean misclassification rates become worse

when oversmoothing occurs, which also causes the corresponding standard deviations

to grow larger. This makes sense because the oversmoothing greatly impacts the orig-

inal functional data so that it disguises the dissimilarity amongst the original groups

of functional data. Therefore, the proposed classification algorithm cannot classify

the groups of smoothed curves correctly. Overall, the sensitivity analysis study tells

us that appropriate smoothing for the raw functional data matters on the classifi-

cation performance by using our proposed algorithm. In practice, we recommend a

small amount of presmoothing, to avoid the danger of oversmoothing the raw data.

1.6 Real Data Application

In this section, we apply our method to three real data sets and investigate its classi-

fication performance by comparing it to competing functional classification methods.

Of the three real data cases, the first two are frequently analyzed benchmark data, in

particular the famous Berkeley growth data (Ramsay and Silverman, 2005) and a set
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Figure 1.9: Figure (a), (b), (c), (d) represent the mean misclassification rates with
one standard deviation at various smoothing parameters from 10−10 through 10 for
Model I, II, III, and IV, respectively.

of phoneme spectral data (Ferraty and Vieu, 2006). The third one is data from 12

groups of textile fibers in forensic casework described by Fuenffinger (2015). We com-

pare our method (DB) to the competing classification methods proposed in Section

4, including linear discriminant analysis (LDA) and quadratic discriminant analy-

sis (QDA) under the application of functional principal component analysis (PCA)

and the Trimmed Weighted Averaged Distance (TAD) and Distance to the Trimmed

Mean (DS) under the application of modified band depth. In order to obtain the

best performance in classification for applying our method, we employ the multivari-

ate functional h-mode depth by using a bivariate functional observation composed of

the raw curve and the corresponding first derivative. For simplicity, we merely use

the LDA and QDA in functional PCA approach, since other discriminant analysis

methods like NNET and SVM perform similarly to them typically. Moreover, we
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Table 1.5: The mean misclassification rate and standard deviation (in parenthesis)
at various smoothing parameters λ from 10−10 through 10 for four models. Note that
the values in the table are in percent.

λ
1e-10 1e-09 1e-08 1e-07 1e-06 1e-05

Model I 0.35 (0.37) 0.58 (0.49) 4.19 (1.24) 6.84 (1.48) 18.11 (1.88) 21.36 (2.04)
Model II 0.28 (0.3) 0.54 (0.42) 4.52 (1.21) 7.2 (1.47) 18.98 (2.18) 22.11 (2.28)
Model III 0.28 (0.27) 0.46 (0.35) 3.08 (0.87) 9.54 (1.6) 29.62 (2.75) 32.14 (2.39)
Model IV 0.23 (0.24) 0.43 (0.33) 3.41 (0.83) 9.85 (1.61) 29.74 (2.75) 32.23 (2.38)

1e-04 0.001 0.01 0.1 1 10
Model I 21.33 (2.06) 21.33 (2.07) 21.31 (2.04) 21.36 (2) 21.4 (2.03) 21.35 (2.02)
Model II 22.1 (2.28) 22.09 (2.3) 22.13 (2.36) 22.09 (2.39) 22.13 (2.31) 22.12 (2.38)
Model III 32.16 (2.36) 32.18 (2.43) 32.14 (2.32) 32.17 (2.34) 32.17 (2.38) 32.17 (2.33)
Model IV 32.26 (2.4) 32.28 (2.38) 32.26 (2.39) 32.2 (2.44) 32.25 (2.38) 32.27 (2.35)

also compare our method to a pure nonparametric (NP) method merely using the

multivariate functional h-mode depth, which classifies a curve to the group in which

it has the largest depth.

1.6.1 Berkeley Growth Data

The Berkeley growth data originally collected by Tuddenham and Snyder (1954) con-

sists of the heights of 39 boys and 54 girls from age 1 to 18, measured intermittently.

Of interest with these data is classifying a child’s gender using that child’s growth

curve (i.e., the function of height over time). Based on our simulation results, a

pre-processing smoothing technique can yield better results in terms of classification

performance. So we first smooth all the curves by applying a B-spline smoother with

the optimal penalty parameter chosen by generalized cross-validation, by regularizing

the second derivatives. Then, we randomly select 20 centered smoothed curves for

each group, i.e., boys and girls, and apply our method and its competitors to the rest

of the curves. We calculate the misclassification rates of each classification method

to judge their accuracy. We repeat this process 100 times, and Table 1.7 shows that

our method performs competitively for this data set.
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Figure 1.10: (a). 20 raw curves of growth height for girls and boys. (b). Smoothed
curves. (c). First derivatives. (d). Second derivatives.
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Figure 1.11: First four functional principal component scores of 20 curves of growth
height for girls and boys. The first two scores account for about 94.5% of the variation
of the five groups of curves, where group 1 and group 2 are clearly separate from each
other.
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1.6.2 Phoneme Spectral Data

The phoneme data consist of five groups of phoneme curves in log-periodogram at

150 frequency measurements (Ferraty and Vieu, 2006). Each group consists of 400

observed curves. The five phonemes are “aa”, “ao”, “iy”, “sh” and “dcl”, respec-

tively. Similar to the pre-processing for the Berkeley growth data, we conduct B-

spline smoothing on the phoneme curves by regularizing the second derivatives such

that the first and second derivatives are smoothed. We randomly select 100 smoothed

curves for each phoneme as the training set and use the rest as the testing set. We

apply our method and the competitors on the testing data. We repeat the process

100 times and get the misclassification rate for each method. The result shows that

our method is very competitive.

 

 

0 0.2 0.4 0.6 0.8 1

0
5

10
15

20
25

(a)

 

 

0 0.2 0.4 0.6 0.8 1

0
5

10
15

20
25

(b)

 

0 0.2 0.4 0.6 0.8 1

−
50

0
50

10
0

15
0

(c)

 

0 0.2 0.4 0.6 0.8 1

−
15

00
−

10
00

−
50

0
0

50
0

(d)

Figure 1.12: (a). 10 raw curves for each of phonemes “aa”, “ao”, “iy”, “sh” and “dcl”.
(b). Smoothed curves. (c). First derivatives of the 50 curves. (d). Second derivatives
of the 50 curves.

33



www.manaraa.com

−6 −4 −2 0 2 4 6

−
4

−
3

−
2

−
1

0
1

2
3

PC1 Score (69.2%)

P
C

2 
S

co
re

 (
22

.7
%

)

1

1
1 1

1

1

1

1

1

1

11

1

1
1

1

1
1 1

1
11

1
11

1

1

1

1

1

1

1

1
1

1

1

1 1
1

1

1

1

1

1

11
1

1

1
1

2
2

2

2

2

2

2
2 2

2

2

2

2

2

2

2

2

22
2

2

2

2

2

2

22

2

2

222
2

2
2

2

2
22 22

2

2

2

2
2

2
22 2

3

3 3

3

3

3

3

3
3

3

3

33
3 3

3
3 3

3

3

3

3
33

3
33 33

3

3
3

3

3
3

3

333 333

3

3
33

3
3

3

3

4 4
4

4 4

4

4 44

4

4
4

4 4

4 4
4

4

4

4
44

4

4
4

4

4
4 4

4

4

4

4

4 4

4

4 4

4

4 4

4 4

4

44

4

4 4

4

5

5

5
5

5

5
5

5

5

5
5

5 5 5 5

5
55

5

5
5

55

5

5

5

5
5

5

5

55
5

5

5

55 5

5

55

5
5

5

5

5
5

5

5

5

−2 −1 0 1 2

−
1.

5
−

1.
0

−
0.

5
0.

0
0.

5
1.

0
1.

5

PC3 Score (4%)

P
C

4 
S

co
re

 (
2.

2%
)

1

1

1

1

1

1

1

1

1

1

1
1

1

1

1

1

1

1

11

1

1

1

1 1

11

1

1

1
1

1

11

1

1

1

1

1

11

1

1

1

1
11

1

1

1

2
2

2

2

2

2

2
2

2

2

2

2

2

2

2

2

2

2
22 2

2

2

2

2
2

2

2

2

2

2

22
2 2

2

2

2

22

2

2
2

2

2

2

2

2

2 2

33
3

3

3

3

3

3

3

3

3

3
3

3
3

3

3

3

3
3

3

3

3

3

3

3

3

3

3
3

33

3

3
3

3

3

3
3

3

33

3

3

3

3
33

3

3

4

4

4

4

4
4

4

44

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4 4

4

4
4

44

4

4

4

4

4

4

4

4

44

4

4

4

4

4

5

5

5
5

5

5

5

5 5
5

5

5

55
5

5

5

5

5

5

55

5

5

5

5

5

5

5

5

5

5

5

5

5
55

5

5

5

5

5

5

5

5

5
5

5

5

5

Figure 1.13: First four functional principal component scores for 50 curves of each
five phonemes “aa”, “ao”, “iy”, “sh” and “dcl”. The first two scores account for
about 92% variation of the five groups of curves, while group 1 and group 2 mask
each other. Instead, though the third and fourth scores explain merely 6%, it might
provide additional information to discriminate group 1 and group 2 somehow.

1.6.3 Forensic Data

The forensic data consist of 12 blue acrylic fibers, represented via UV-visible ab-

sorbance spectra (by Ultraviolet-visible microspectrophotometry) in a forensic study.

The data are provided by Fuenffinger (2015) and Morgan (2014). The UV-visible

absorbance spectra of 12 blue acrylic fiber types were examined 10 times each at

1175 spectral measurement points in the region 400-800 nm at five separate locations

(including three academic research laboratories and two forensic laboratories). Our

interest is to classify the fiber type given a new UV-visible absorbance curve. Because

these UV-visible absorbance curves were measured in different locations, there are

batch effects caused by the location. Analogously, we conduct the B-spline smooth-

ing on these fiber absorbance curves by regularizing the second derivatives. Then,

the smoothed curves are used to compare the classification performance between our

method and the aforementioned competitors. We randomly select 30 curves from
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each group as the training data, and the rest become the testing data. We apply

our method and the competitors to the training and testing data and we obtain the

misclassification rate on the test data for each method. We repeat this process 100

times and the misclassification rate for each method shown in Table 1.7 represents

that our method gives the best result.

Table 1.6: The confusion matrix of the predicted classes and true classes. The rows
represent the true classes and the columns for the predicted classes. In each row, the
cell values are the mean classification rate in percent in each possible class. It shows
that our method has inferior performance on classifying the fiber 086 and fiber 112,
which reflects the fact that these two groups of curves are highly similar each other.

Predicted Class
True Class F086 F087 F088 F091 F092 F095 F098 F099 F112 F113 F114 F145

F086 75.75 0.00 0.00 0.00 0.00 0.00 0.00 0.00 24.25 0.00 0.00 0.00
F087 0.00 98.70 1.30 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
F088 0.00 7.45 92.50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.05 0.00
F091 0.05 0.30 0.05 92.30 0.05 0.00 0.00 2.50 0.00 4.55 0.20 0.00
F092 0.10 0.50 0.00 0.60 97.60 0.30 0.10 0.60 0.00 0.00 0.20 0.00
F095 0.05 0.15 0.15 4.55 0.00 93.90 0.05 0.95 0.00 0.05 0.15 0.00
F098 0.95 0.00 0.00 0.00 0.00 0.00 98.60 0.00 0.45 0.00 0.00 0.00
F099 0.00 0.60 0.00 0.00 0.00 0.00 0.05 99.25 0.00 0.00 0.10 0.00
F112 37.80 0.00 0.00 0.00 0.00 0.00 0.00 0.00 62.20 0.00 0.00 0.00
F113 0.00 0.65 0.25 0.60 0.00 0.00 0.00 0.00 0.00 97.90 0.60 0.00
F114 0.00 0.05 0.40 0.00 0.00 0.00 0.00 0.00 0.00 0.00 99.55 0.00
F145 1.75 0.00 0.00 0.00 0.00 0.00 1.00 0.00 1.90 0.00 0.00 95.35

Table 1.7: Misclassification mean rate and standard deviation (in parenthesis) in
percent for the three real data, that is, the Berkeley Growth Data (Growth), the
Phoneme Data (Phoneme) and the Forensic Fiber Data (Forensic). Our method is
quite competitive among the selected classification methods, and performs the best
for the forensic fiber data.

LDA QDA DS TAD DB NP
Growth 4.58(2.26) 32.43(9.5) 16.74(8.4) 18.81(7.88) 6.62 (4.22 ) 6.81(3.73)
Phoneme 9.19(1.39) 10.42 (1.57 ) 14.04(1.53) 14.7(1.57) 10.88(1.8) 12.84(2.09)
Forensic 25.3(2.61) 14.68(2.1) 39.98(2.52) 40.89(3.19) 8.03(1.78) 8.74 (1.82 )

1.7 Conclusion

We have proposed a novel classification method for functional data by integrating

statistical functional depth concepts and false discovery rate theory. In order to best
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Figure 1.14: Forensic data: 12 blue acrylic fiber absorbance spectra plot. (a): Raw
curves (b): Smoothed curves (c): First derivative (d): Second derivative

capture the shape, amplitude and phase variation between groups of curves, we aug-

ment the observed functional data by taking derivatives up to an appropriate order

under some smoothing constraints. Based on the augmented multivariate functional

data and a proper multivariate depth function, we propose a novel measure M1 score

to assess the posterior probability of a curve belonging to each group. Compared

with some conventional classification methods on the multivariate data formed by

the principal component scores, our method based on multivariate functional depth

performs better in classification. The optimal dimension of our augmented multivari-

ate functional observations depends on the choice of multivariate functional depth,

and our simulation study shows that the multivariate functional halfspace depth is
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Figure 1.15: First four functional principal component scores for 20 curves of each of
the 12 fiber groups. The first two scores account for about 92.9% of the variation of
the 12 groups of curves, and the third and fourth scores explain merely 6.8%.

more robust to higher-order derivatives of functional observations than multivariate

functional h-mode depth. Moreover, when using the multivariate functional halfspace

depth, the optimal dimension of the multivariate functional observations is obtained

by taking derivatives of curves up to the third order, while it is best to merely take the

first derivative of curves when using multivariate functional h-mode depth. However,

the best performance in classification using our method is based on the multivariate

functional h-mode depth, by forming two-dimensional functional observations which

include the raw curve and its corresponding first derivative.
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Figure 1.16: Power function for each of the 12 hypothesis tests.
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Figure 1.17: CDF’s of depth ratio TXk(Z) under Hk
0 and Hk

a, k = 1, 2, . . . , 12 respec-
tively. The solid CDF is under the alternative hypothesis and the dotted CDF is
under the null hypothesis for each k. The CDF’s are estimated using the empirical
CDF rather than using the mixture of logit-normal distributions.
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Chapter 2

A Modified Mixture Model Approach to the

Large Scale Multiple Testing Problem1

2.1 Introduction

In many inference problems, a large scale hypotheses are considered simultaneously.

In such situations, traditional multiple testing methods can lead to numerous false

discoveries and false non-discoveries that are not confirmed in later experiments. In

this paper we discuss an approach that is useful in a simultaneous multiple hypoth-

esis testing situation where the goal is to find the real “discoveries” or “significant”

cases. Based on this approach, we also present a way to explore the inter-relationship

between the hypotheses via a visual network pattern construction. The methodology

developed here is based on a simple two-point mixture contamination model where

one component corresponds to the baseline (background) information and the second

to the sources which are the real discoveries (the contamination). The basic model

for the density of the population under study is assumed to be:

f(x) = p0f0(x) + p1f1(x), (2.1)

with p0+p1 = 1. Here f0 is the background density and f1 is the contamination density

or the density of the signal that one wants to find, while p0 and p1, respectively, denote

the proportions of baseline and significant cases in the study.

1Paramita Chakraborty, Chong Ma, John Grego, James Lynch. Submitted to Statistics in Medicine
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A notable work related to the model in (2.1) for large scale inference is the method-

ology described in Efron (2007, 2010). Efron’s approach is to use the empirical Bayes

(a mixture distribution where the mixing parameter is a latent variable) based on Rob-

bins (1956), and Efron (2010, p. 14) notes that he and Morris originally “hijacked”

Robbins’ terminology for James-Stein estimation purposes (Efron and Morris, 1973).

But his work (Efron, 2007, 2008, 2010) is along the lines of Robbins’ original ideas in

estimating the mixing distribution (the “empirical prior”). Efron also expends a good

bit of effort in determining f0 which he refers to as the “empirical null”. Murlidharan

(2010) subsumes this effort as well as that of choosing f1 in a mixture model empirical

Bayes method that is a specialization of Efron’s Brown-Stein model. His method is

based on mixing over an exponential family where f0 and f1 are submixtures of this

mixture model.

We follow a similar setup and use the associated posterior probabilities for infer-

ence purposes. Our approach is to fit the mixture contamination model in (2.1) to

the p-values or the left-tail areas (LTA’s) from the test statistics associated with the

array of hypotheses under study and use the fitted distributions with a tail adjust-

ment for estimating the background and the contamination densities. This adjusted

empirical fit can be used to approximate continuous or discrete data.

Based on Equation (2.1), the assignment functions are A0(x) = p0f0(x)/f(x) and

A1(x) = p1f1(x)/f(x). These are empirical posterior probability densities of the

background and the contamination classes for a given observation. The assignment

function A1(x) can be used to investigate the chance of an observation coming from

the contamination class f1, i.e. the observation is actually a significant case. The

complementary assignment function A0(x) is related to what is popularly considered

as the local false discovery rate (local fdr or fdr) (Efron, 2010). In recent years, the

false discovery rate has been presented as an effective tool to handle large scale mul-

tiple testing problems (Benjamini and Hochberg, 1995, Storey, 2002). If we label the
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background distribution f0 as the null model and the signal/contamination distribu-

tion f1 as the nonnull model, then it is easy to see that the assignment functions A0(x)

and A1(x) are essentially the posterior probabilities P (null|x) and P (nonnull|x), re-

spectively. In symbols, we refer to the null as H0 and the non-null as H1.

The local fdr can be used to calculate the tail-area false discovery rate Fdr(x) =

P (null||X| > |x|) (assuming symmetric f for two-sided tests). The tail-area Fdr

is a useful tool to screen for potential significant cases. Specifically, observations

with small Fdr can be viewed as less likely to be a false discovery and thus can be

considered as a significant case or a true discovery. Refer to Efron (2010) for detailed

discussion of local and tail-area false discovery rates and their relationships with the

FDR proposed by Benjamini and Hochberg (1995).

In many multiple testing situations, the entire data set is first used to fit a model,

which is in turn used to detect significant cases using the entire data again. By doing

this way, it could lead to over-fitting which may distort the real picture. In this

article, we propose a modified approach that uses a mixture model for using the local

fdr or the tail-area Fdr screening technique, which effectively deals with the over-

fitting issue through the subsampling technique. The proposed methodology starts

with randomly splitting the available data into two halves, where one part is used for

model building and the other part is for anomaly detection. In addition, repeated

sample splitting and resulting detection frequencies provide an informative look into

the inter-relationship between the significant cases. We also present a power analysis

to examine of the efficiency of the proposed method.

Proposed Subsample-Splitting Analysis Methodology:

(i) We first randomly split the subjects under study into two (equal) parts, viz. the

training set and the verification set. The p-values or the LTA’s from the test

statistic associated with each of the hypotheses under study derived from the

training set are named the training data and similar values derived from the
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verification set are named the verification data.

(ii) Then, a mixture contamination model f̂(x) = p̂0f̂0(x)+ p̂1f̂1(x) is fitted by using

only the training data, which is alternately adjusted to capture the baseline and

the signal (empirical fit) appropriately.

(iii) The fitted model is used to derive the tail-area Fdr or the local fdr, based on

the verification data. Given a predetermined cutoff value q, the cases with the

tail-area Fdr (or the local fdr) less than q are identified as significant cases.

(iv) Repeat the stages (i), (ii), (iii) many times with different random splits of the

training and the verification subsets. For each split/repetition, a set of sig-

nificant cases is identified. The most frequently identified significant cases are

considered as “potential discoveries”.

(v) The screened cases detected together and their detection frequencies can be

used to study the inter-relationships/dependencies between the significant cases.

This frequency distribution is used to develop a network structure for the hy-

potheses that graphically describes these insights.

The subsampling approach not only circumvents the over-fitting in the mixture

model, but also balances out other latent sources of variation in the data. The power

and error probabilities associated with the union of rejection regions from all splits are

calculated using the fitted mixture model and provide some objective understanding

of the efficiency of this method. In addition, repeated sample splitting can be used

to produce visualization tools such as frequency networks and parallel coordinate

graphs, that provide useful summation of the data and are easy to understand. The

screening of cases with high detection frequency can also be justified from the stability

selection point of view (Meinshausen and Bühlmann, 2010).

The format of the paper is as follows: the theoretical background required for the

proposed methodology and the associated power and precision probability calculation
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ideas are discussed in Section 2.2. The methodology is illustrated in Section 2.3 using

a microarray data and a RNA-Sequencing data. A simulation study is also included in

the same section along with related power analysis. Some discussion and concluding

remarks are given in Section 2.4.

2.2 Identification of Significant Cases and Power Calculations

In this section, we discuss the theoretical model formulation and present the screening

and power analysis tools. The random variables X1, . . . , Xn under study are assumed

to be i.i.d. with density (2.1). In this discussion Xi’s can be the p-values or the LTA’s

from the test statistics. As noted earlier in Section 2.1, the local false discovery rate

(fdr) (Efron, 2007) is essentially the same as the assignment function A0(x). From the

identity (2.15) (Efron, 2010), the relationship between the local fdr and the tail-area

Fdr(B) for a given tail-area B is Fdr(B) = E(fdr(X)|X ∈ B).

2.2.1 Empirical Fit

Using the observed Xi’s first fit a mixture of the Uniform distribution in [0,1] f ∗0 and

the Beta distribution f ∗1 for the population density

f̂(x) = p∗0 · f ∗0 (x) + p∗1 · f ∗1 (x)

Since our main interest is the identification of the most extreme cases, we adjust the

signal (contamination) part as follows. Let f ∗1 = f ∗01 + f ∗11, where

f ∗01(x) = f ∗1 (x) · I{f ∗1 (x) < 1}+ 1 · I{f ∗1 (x) > 1} (2.2)

f ∗11(x) = 0 · I{f ∗1 (x) < 1}+ [f ∗1 (x)− 1] · I{f ∗1 (x) > 1} (2.3)

Therefore, f ∗11 captures the more extreme part of the signal. Since f ∗11 is not a density,

it needs to be normalized as follows. Let
∫
R f
∗
11(x)dx = A11 and define

f̂1(x) = 1
A11

f ∗11(x)
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and p̂1 = p∗1 · A11 and p̂0 = 1− p̂1. Now let

f̂0(x) = p∗0
p0
· f ∗0 (x) + p∗1

p0
· f ∗01(x).

Then the fitted model can be re-written as

f̂(x) = p̂0f̂0(x) + p̂1f̂1(x). (2.4)

Note that the fitted mixture model is unchanged; the terms have been rearranged

so that f̂0 captures more of the middle part of the data while f̂1 captures the tail

part. The rearrangement given in (2.4) is what we will refer to as the “empirical

mixture model” and is related to Efron’s “empirical null”; this representation of the

fitted mixture model better captures the baseline and the signal distribution than the

original Uniform/Beta mixture representation. To derive the estimates for expressions

presented in next two subsections one has to just replace the subsequent terms in the

assumed population density f(x) = p0f0(x) + p1f1(x) by Equation (2.4). The cutoff

point for the tail-adjustment in the equation (2.2) does not have to be equal to 1.

Based on expected proportion of the signal present in a study, the cutoff point c ∈ R

can be chosen subjectively. The assumption that the null data follows a Uniform

distribution may not be a practical one specially in discrete cases (Murlidharan, 2010).

But the tail adjustment part can compensate, at least in part, for the deviation from

Uniform in the final adjusted form f̂0. One can also start with a Beta/Beta mixture

at the first step if the null data is expected to deviate too much from the Uniform

distribution and the rest of the adjustment and analysis steps will be exactly the

same.

2.2.2 Screening Significant Cases Based on Fdr and Sample Splitting

In case the p-values are used for the analysis, Xi’s close to 0 are associated with

the signal (contamination). If Xi’s are the LTA’s from the test statistic then Xi’s

close to 0 or 1 (or both) are associated with the signal/contamination depending on
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whether we are in a left-sided test, right sided-test (or two-sided test) situation. The

advantage of using LTA’s for the analysis is that the directions of deviation of the

screened cases from the null can be easily identified. Thus the tail area B (left, right

or two-sided) used for Fdr calculation will depend on the definition of Xi’s and the

direction of the hypotheses under study.

Let F be the cumulative distribution function corresponding to f . Let F (B) =∫
B f(x)dx, for any Borel set B. Similarly, write F0 as the distribution function of the

baseline distribution f0. With this notation we derive the tail-area Fdr associated

with a given tail-area B as follows:

Fdr(B) = E(fdr(X)|X ∈ B) =
∫

B

fdr(x)dF (x)
F (B)

= 1
F (B)

∫
B

p0f0(x)
f(x) f(x)dx = p0F0(B)

F (B) . (2.5)

In practice, one can consider the tail-area B(x) associated with any value x under the

support S of f . The tail-area false discovery rate Fdr (B(x)) associated with x can be

calculated using the equation (2.5).

If Xi’s are p-values derived for each hypothesis under study, for any x ∈ S, the

appropriate tail area to use is B(x) = {y ∈ S : y < x}. When Xi’s are LTA’s

from test statistics, one should use B(x) = {y ∈ S : y < x} for a left sided test,

B(x) = {y ∈ S : y > x} for a right sided test. Whereas, in a two sided test situation

with f symmetric around zero, the tail area simply is B(x) = {y ∈ S : |y| > |x|}. In

general, for f which is not symmetric, the two-sided tail area can be derived using

matching percentiles. Express any x as the pth percentile of f , i.e.,
∫ x
¬∞ f(u)du = p;

then a complement x∗ can be found such that
∫ x∗
¬∞ f(u)du = 1− p. Now if p < 0.5 (x

is smaller than the median) we choose

B(x) = {y ∈ S : y < x} ∪ {y ∈ S : y > x∗}. (2.6a)

On the other hand if p > 0.5 (x is larger than the median) we choose

B(x) = {y ∈ S : y < x∗} ∪ {y ∈ S : y > x}. (2.6b)
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An observation x with Fdr (B(x)) smaller than the predetermined critical value

should be identified as significant. For the application part with tail-area Fdr screen-

ing, a training split is first used to fit the adjusted mixture model (2.4). Then for

each data point xi in the corresponding verification split, the appropriate tail area

B̂(xi) is determined using the fitted model. Next f̂0, p̂0 and f̂ from the training fit

are used with the model (2.5) to derive the estimated observed tail-area Fdr, viz.

F̂dr(B̂(xi)). Any case with F̂dr(B̂(xi)) < q is screened as a potential discovery, where

q is a pre-determined cutoff point.

For the screening with local fdr after fitting the adjusted mixture model with

the training split, the fitted densities are used to calculate estimated local fdr

f̂dr(xi) = p̂0f̂0(xi)
f̂(xi)

for each verification split data point. Cases with f̂dr(xi) less than q

(predetermined) are considered to be potential discoveries. In terms of the rejection

region, for any fixed cutoff point q, depending on the tail-area Fdr or the local fdr

screening, the theoretical rejection set from the kth split is given by

Rk(q) := {x ∈ Sk : F̂dr (B(x)) < q} (2.7a)

or

R̃k(q) := {x ∈ Sk : f̂dr (B(x)) < q}, (2.7b)

where Sk is the support of f̂ from the kth sample split.

The above calculation is repeated a number of times. The potential significant

cases can be identified from the combined rejection set ⋃k Rk(q) or ⋃k R̃k(q). But to

increase the precision, only the observations that have been detected repeatedly with

high frequency across the Rk(q)’s or R̃k(q)’s should be considered as potential true

discoveries. The critical frequency of detection for an observation at screening can be

set subjectively depending on what percentage of overall discoveries are expected for

a given study.
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2.2.3 Power and Error Probabilities Calculation

Efron (2007, 2010) uses a whole data fit on the z-values transformed from the p-values

associated with the hypotheses under study and advocates the use of the local fdr

for the screening of significant cases. In that analysis, for a given cutoff point q of

the local fdr, the rejection region effectively is R̃(q) = {x ∈ R : fdr(x) < q}. The

power diagnostic tools chosen in those discussions are the non-null average of the

local fdr EH1(fdr) and the non-null cdf of the local fdr given by G(q) = PH1(fdr <

q) = PH1

(
R̃(q)

)
=
∫
R̃(q) f1(x)dx. Some empirical estimates of these functions were

used in Efron (2007, 2010) for the power analysis.

For the sample splitting method proposed in this paper, where the model is fitted

on the p-values or LTA’s associated with test statistics, the rejection region from the

kth split can be obtained from (2.7). The combined rejection region from all splits

can then be constructed as R(q) = ⋃
k Rk(q) or as R(q) = ⋃

k R̃k(q), depending on

the screening tool used. Considering the mixture model setup in (2.1), for a given

rejection region R(q) with a cutoff point q, the following probabilities can be used for

the power analysis and a relative efficiency comparison:

Power: PH1 (R(q)) =
∫

R(q)

f1(x)dx (2.8)

Type I error: PH0 (R(q)) =
∫

R(q)

f0(x)dx (2.9)

Type II error: PH1 (Rc(q)) =
∫

Rc(q)

f1(x)dx (2.10)

Precision: P (H1|R(q)) =
p1
∫
R(q) f1(x)dx∫
R(q) f(x)dx (2.11)

Here, f0, f1 and f are the true densities that follow from the assumption that

X1, . . . , Xn are i.i.d. with p.d.f (2.1). These terms recalling, false negative rate,

false positive rate, and precision are commonly used in machine learning (Powers,

2011).
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The estimates of eqs. (2.8) to (2.11) for a given data set can be obtained from the

following steps:

Rejection Region and Power Calculation Steps.

(i) Suppose sample splitting and subsequent screening were done N times following

the steps in Section 2.2.2 and for a given q the rejection regions Rk(q) or R̃k(q)

(as in (2.7)) were obtained from each of the splits.

(ii) For a two sided test with LTA’s the rejection region from the kth split, using

either the tail-area Fdr or the local fdr screening, can be written as:

Rk(q) = {x ∈ R : Fdr (B(x)) < q} = {x < x∗k} ∪ {x > x∗∗k }

R̃k(q) = {x ∈ R : fdr (B(x)) < q} = {x < x̃∗k} ∪ {x > x̃∗∗k }.

Then writing

x∗ = max
k

x∗k and x∗∗ = min
k
x∗∗k ,

x̃∗ = max
k

x̃∗k and x̃∗∗ = min
k
x̃∗∗k ,

the combined rejection region can be expressed as:

R(q) =
N⋃
k=1

Rk(q) = {x < x∗} ∪ {x > x∗∗} (2.12a)

or

R(q) =
N⋃
k=1

R̃k(q) = {x < x̃∗} ∪ {x > x̃∗∗} (2.12b)

depending on the choice of the screening tool. The equation (2.12) will include

sets with one sided region only for p-value analysis or one sided tests with

LTA’s.

(iii) A mixture model f̃(x) = p̃0f̃0(x) + p̃1f̃1(x) with tail adjustment, fitted to the

entire data (without any data splitting) can be used for the estimates of the

densities in eqs. (2.8) to (2.11).
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(iv) Numerical integration and numerical root finding techniques can be used to

estimate the probabilities in eqs. (2.8) to (2.11) and to find x∗k and x∗∗k or x̃∗k

and x̃∗∗k from (2.7), where closed form solutions are not feasible.

The power and error probabilities in the steps above are associated with the final

analysis method that combines all N splits and not with any single training split in

particular. Therefore, for the estimation of eqs. (2.8) to (2.11) it is appropriate to

use a mixture model fitted to the entire data for estimates of densities f0, f1 and f

as suggested in step (iii) above. An individual fit from any single particular training

split should not be used for the power analysis. Using the combined rejection region

R(q) for screening will increase the number of rejections compared to whole data

based screening described in Efron (2007). This will naturally increase the power

(2.8) of the proposed method but the payoff will be a loss of precision (2.11). Using

only the cases in R(q) with high detection frequencies as the potential discoveries

will increase the precision of the method. An added benefit of expressing the error

probabilities as a function of Fdr cutoff point q is that one can choose q where both

the type I and the type II error probabilities are at a reasonable level. Alternatively,

an appropriate q can also be chosen so that the proportion of correct classifications

Ã(q) = p1F1 (R(q)) + p0F0 (Rc(q)) is at a desired level. Ã is also known as the

“accuracy” function in machine learning.

2.3 Illustrative Examples

In this section we illustrate the proposed methodology with a microarray data set and

a RNA-sequencing data set where the goal is to identify genes that are expressed at

a significantly higher or lower level in the experiment group compared to the control

group. Also, simulated data is used to present the power analysis and other related

plots.
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2.3.1 Microarray Data Analysis

The data set used in this subsection is a prostrate cancer microarray data used in

Efron (2010) from Singh et al. (2002), which is available in the R package sda, named

after “singh2002”. The data consist of 102 microarray samples with expression levels

for the same 6033 genes, where 52 samples are for prostate cancer patients and 50

for normal subjects. The analysis aims to detect genes that have significantly differ-

ent expression levels between the cancer and the non-cancer group, and to explore

the inter-relation between these genes. The genes that have significantly different

expression levels between the cancer and the non-cancer group are supposed to be

captured in the screening part, while a frequency network plot is generated to explore

the inter-relation between these genes. We used LTA’s with tail-area Fdr screening

for the analysis, although a local fdr screening also can be used following the steps

described in Section 2.2.

To begin, the data was split into the training set and the verification set. The

training split consisted of 26 randomly selected prostate cancer patients and 25 nor-

mal subjects. The remaining 26 patients and 25 non-cancer subjects formed the

verification split. The training data was used to fit the contamination model (2.4).

This is described next.

The two-sample t-statistic ti, i = 1, 2, . . . 6033, is calculated for each gene from

the training group where it is assumed that ti follows a central t-distribution with

degrees of freedom 26+25-2=49. The LTA for each of these ti’s is calculated as:

xi = P (t < ti), i = 1, 2, . . . 6033. (2.13)

Note that, xi’s should be close to 0 or 1 for genes that are deemed significantly differ-

entially expressed in the cancer and non-cancer groups. The histogram of the xi’s for

the 6033 genes in Figure 2.1 shows a bathtub shape that suggests that most of the

gene expressions are uniformly distributed but with more than expected (under the
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uniform) close to 0 and 1. Prompted by the distinctive shape of the histogram, we

first fitted a mixture of the uniform distribution in [0,1] Uniform(0, 1) and a Beta dis-

tribution to the training data and then readjusted it as described in subsection 2.2.1.
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(a) Uniform-Beta mixture model.
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(b) Adjusted Uniform-Beta mixture model.

Figure 2.1: The histogram of xi (left-tail-area for the observed two sample t-statistic
for genes i = 1, 2, . . . , 6033) from the entire prostate cancer data set. Superimposed
on Figure (a) are the fitted Uniform, Beta and the associated mixture distribution
obtained from one particular training split as f̂(x) = 0.851f ∗0 (x) + 0.149f ∗1 (x) where
f ∗0 is the Uniform(0, 1) p.d.f and f ∗1 is the Beta(0.417, 0.410) p.d.f. And on Figure (b)
is the empirical null fit adjusted from the fitted Uniform-Beta mixture as in the
equation (2.4) as f̂(x) = 0.96f̂0(x) + 0.04f̂1(x).

Next following (2.5), we compute the tail-area Fdr associated with each gene.

Genes with tail-area Fdr less than 0.1 are declared as significantly different between

cancer patients and non-cancer subjects. This procedure was repeated on 100 dif-

ferent sample splits. Out of these 100 repetitions, 66 verification groups identified

at least one significant gene with associated tail-area Fdr less than 0.1. The other

34 verification groups failed to capture any significant gene. Few verification sets

identified more than one significant gene. After 100 repetitions of this procedure, out

of the total 6033 genes, 69 genes were identified to be significantly differentially ex-

pressed in the cancer patients compared to non-cancer subjects. These 69 significant
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(b) Adjusted Uniform-Beta mixture model.

Figure 2.2: The histogram of xi (left-tail-area for the observed two sample t-statistic
for genes i = 1, 2, . . . , 6033) from a particular verification split consisting of half of
the control and the treatment group respectively. Superimposed on (a) are the fitted
Uniform-Beta and the associated mixture distribution obtained from the correspond-
ing training split as f̂(x) = 0.622f ∗0 (x) + 0.378f ∗1 (x) where f ∗0 is the Uniform(0, 1)
p.d.f and f ∗1 is the Beta(0.696, 0.736) p.d.f. Figure (b) is the empirical null fit ad-
justed from the fitted Uniform-Beta mixture distribution as in Equation (2.4) where
f̂(x) = 0.966f̂0(x) + 0.034f̂1(x).

genes included some that are expressed at significantly higher levels among the cancer

patients (resulting in large t-statistics and consequently xi’s close to 1) and some at

significantly lower levels among the cancer patients (resulting in small t-statistics and

consequently xi’s close to 0).

The parallel coordinates graph for 69 significant genes in Figures 2.3(a) and 2.3(b)

show the variation among xi’s for these genes observed in 100 different verification

splits. The plot reveals a consistent pattern across different splits. The 0.1 critical

value for the tail-area Fdr was able to capture at least one significant gene in specific

splits (66 splits) and missed the signal in other splits (34 splits). But the the patterns

in the parallel coordinate plots indicate these genes are expressed consistently at

higher or lower levels throughout all 100 splits. These patterns may suggest biological

significance.
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Table 2.1: 22 most significant genes from 100 sample splits of the prostate cancer data
(with the detection frequency 2 or higher). The third column indicates the frequency
of occurrence for the corresponding gene in the 100 splits. The columns med.x, avg.x
and sd.x are the median, mean and standard deviation of tail area x (as in Equation
(2.13)) for each gene computed from 100 randomly chosen verification data sets.

Gene freq med.FDR med(x) avg(x) sd(x)
610 10 8.45E-02 1.00E+00 9.99E-01 3.93E-03
1720 9 8.43E-02 1.00E+00 9.98E-01 6.28E-03
914 7 7.93E-02 9.99E-01 9.97E-01 5.94E-03
4331 6 7.70E-02 1.22E-03 6.80E-03 1.32E-02
579 5 7.22E-02 9.99E-01 9.93E-01 1.15E-02
1068 4 8.05E-02 9.98E-01 9.96E-01 8.08E-03
4546 4 6.92E-02 1.04E-03 5.74E-03 1.27E-02
1089 3 8.88E-02 9.98E-01 9.91E-01 2.05E-02
364 3 4.17E-02 6.96E-04 3.43E-03 7.35E-03
4518 3 8.97E-02 9.96E-01 9.88E-01 2.38E-02
1130 2 7.55E-02 9.97E-01 9.89E-01 1.95E-02
1458 2 6.73E-02 3.67E-02 6.61E-02 7.41E-02
2856 2 8.84E-02 7.05E-03 2.43E-02 4.57E-02
2945 2 7.33E-02 6.62E-03 1.91E-02 3.30E-02
3017 2 7.19E-02 6.52E-03 2.09E-02 3.41E-02
332 2 4.94E-02 9.99E-01 9.97E-01 8.29E-03
3505 2 8.05E-02 6.90E-03 1.88E-02 2.74E-02
3647 2 7.57E-02 9.97E-01 9.91E-01 1.92E-02
3940 2 6.57E-02 1.10E-03 6.79E-03 1.52E-02
4000 2 6.06E-02 5.18E-03 1.94E-02 4.03E-02
4316 2 9.47E-02 3.07E-03 9.07E-03 1.50E-02
921 2 8.19E-02 4.27E-03 1.55E-02 2.84E-02

Table 2.2: The frequency of occurrence for pairs of significant genes in 100 verification
data sets.

Gene-pairs freq
(1068,914) 2
(914,1720) 2
(914,2945) 2
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(a) Full parallel coordinate plot.
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(b) Partial parallel coordinate plot.

Figure 2.3: Parallel coordinate plot for the detected significant genes using the tail-
area Fdr cutoff value q = 0.1. Each tick on the horizontal axis represents a significant
gene, and the vertical axis shows the left tail-area x from the two sample t-statistic
obtained in each of the 100 validation samples. Figure (a) is a full profile for all of
the detected significant genes and Figure (b) is the plot for the 10 most significantly
differentially expressed genes.

Genes that are repeatedly detected as significant strongly confirm the difference

between the patient and the control group. Table 2.1 shows the significant genes

(with detection frequency at least 2) along with the number of times they were iden-

tified as significant through the 100 sample splits. Some sets of genes were identified

as significant as a group more than once. With proper biological oversight and inter-

pretation, these sets of genes may help in the understanding of network relationships.

Table 2.2 shows genes identified as significant in groups with the number of times

they were identified together (table shows pairs).

Figure 2.4(a) shows the frequently identified significant genes and the sets of genes

with which they are simultaneously identified as significant across 100 sample splits

and subsequent screenings. In this gene frequency network graph (F-network), the

nodes and edges indicate the detected significant genes and the detection of two

genes at the same time in a particular split. The node size indicates the frequency of
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(a) Frequency network for significant genes.
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(b) Simplified frequency network for (a).

Figure 2.4: Figure 2.4(a) is the entire F-network of 69 significant genes detected at
least once in the 100 cross-validation processes with tail-area Fdr ≤ 0.1. Figure (b)
is the sparse F-network created from Figure (a) by deleting genes with detection
frequency 1. The change of color from blue to red indicates the corresponding gene
expression level changing from significantly lower to significantly higher in the cancer
group compared to the control group.

detection for that gene and the edge width indicates the frequency of detection for

the pair of significant genes at the same time. The node color represents the median

tail area from the 100 verification data sets for that gene, for which the color turns

from blue to red accordingly as the tail area increases from small (close to 0) to large

(close to 1). That is, the red nodes represent genes expressed at significantly higher

levels and the blue nodes represent genes expressed at significantly lower levels in the

cancer patients’ group compared to the controls. Figure 2.4(b) shows genes with at

least three edges for a clearer picture into the network.

2.3.2 RNA-seq Data Analysis

The proposed methodology can be used to analyse data from more recent gene ex-

pression study mechanism like RNA-sequencing. In this subsection we present such

a analysis and also illustrate how the method can be used with p-values. The data
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consist of RNA-Seq profiles of cell lines derived from lymphoblastoid cells from 69

different Yoruba individuals from Ibadan, Nigeria (Pickrell et al., 2010). The study

group is an “opportunity” sample and the samples are likely to be genetically diverse.

The aim of analysis is to investigate differentially expressed genes between males and

females. The RNA count data are available in the R package tweeDEseqCountData.

In the raw RNA count data, there are 38415 genes with or without defined anno-

tations. To filter out the noninformative genes, we keep genes with both defined

annotations and at least 1 count-per-million (cpm) in at least 20 samples. At last,

there are 17, 310 genes remaining for the differential gene analysis.
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(a) Unadjusted fit for the whole data.
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(b) Adjusted fit for the whole data.

Figure 2.5: The mixture model for the p-values using the whole data set. f(x) =
0.993f ∗0 (x) + 0.007f ∗1 (x) where f ∗0 (x) is Uniform(0, 1) density, and f ∗1 (x) is the
Beta(α = 0.064, β = 1.517) density. The adjusted mixture model is f(x) =
0.994f0(x) + 0.006f1(x).

Of the 69 individuals, there are 40 females and 29 males. From the whole group

20 female and 15 male subjects were randomly selected to construct the training

split, (the remaining subjects constructed the verification split). Assuming that the

data follow a negative binomial distribution (Anders and Huber, 2010), the p-value

for each gene was calculated using generalized likelihood ratio test comparing male

and female subjects in the training split. The training data consist of these 17, 310
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Table 2.3: 28 most frequently detected significant variables from 100 sample split
data sets with the tail-area Fdr< 0.1 (detection frequencies 40 or higher). The third
column indicates the frequency of occurrence for the corresponding variable (i) in the
100 cross validations. The columns med.x, avg.x and sd.x are the median, mean and
standard deviation of the LTA’s x for each variable computed from 100 randomly
chosen verification data sets.

ID Symbol Chrom freq med.FDR med(x) avg(x) sd(x)
ENSG00000229807 XIST X 91 2.27E-19 8.92E-25 2.44E-23 7.24E-23
ENSG00000099749 CYorf15A Y 91 1.70E-16 1.64E-21 1.00E-20 2.58E-20
ENSG00000131002 CYorf15B Y 91 1.76E-14 1.92E-19 1.09E-18 2.13E-18
ENSG00000157828 RPS4Y2 Y 91 3.85E-14 2.32E-19 4.52E-18 1.49E-17
ENSG00000233864 TTTY15 Y 91 2.60E-13 1.31E-18 4.96E-17 2.03E-16
ENSG00000198692 EIF1AY Y 91 1.39E-11 3.89E-16 7.25E-15 2.11E-14
ENSG00000165246 NLGN4Y Y 91 7.37E-10 2.89E-14 3.86E-13 9.19E-13
ENSG00000183878 UTY Y 91 1.97E-09 1.63E-13 1.87E-12 5.62E-12
ENSG00000243209 AC010889.1 Y 91 4.93E-09 6.55E-13 3.18E-12 1.01E-11
ENSG00000129824 RPS4Y1 Y 91 1.16E-08 3.81E-13 2.03E-11 6.14E-11
ENSG00000012817 KDM5D Y 91 1.27E-08 1.41E-12 1.41E-11 4.08E-11
ENSG00000213318 RP11-331F4.1 16 91 2.12E-08 2.51E-12 2.82E-11 9.40E-11
ENSG00000067048 DDX3Y Y 91 2.16E-07 1.56E-11 6.59E-10 2.70E-09
ENSG00000146938 NLGN4X X 91 4.98E-06 7.24E-10 7.74E-09 1.86E-08
ENSG00000006757 PNPLA4 X 89 1.91E-04 9.08E-08 3.44E-07 8.81E-07
ENSG00000232928 RP13-204A15.4 X 88 2.41E-05 5.84E-09 1.84E-07 6.61E-07
ENSG00000214541 AL137162.1 20 84 4.20E-04 2.16E-07 1.48E-06 2.72E-06
ENSG00000226948 RP5-1068H6.3 20 76 9.72E-04 8.62E-07 2.95E-06 4.99E-06
ENSG00000229920 AC016734.3 2 72 7.49E-04 9.67E-07 1.10E-05 3.66E-05
ENSG00000242058 RP11-143J12.1 18 64 1.40E-03 2.47E-06 9.25E-06 1.58E-05
ENSG00000198034 RPS4X X 64 1.88E-03 3.49E-06 9.70E-06 1.69E-05
ENSG00000244097 RP11-411G7.1 17 62 1.80E-03 3.95E-06 1.14E-05 2.14E-05
ENSG00000239490 RP11-863N1.1 18 61 9.45E-04 2.68E-06 3.21E-05 8.07E-05
ENSG00000239830 CTD-3116E22.2 19 58 2.64E-03 6.68E-06 2.39E-05 6.72E-05
ENSG00000214203 RP11-135F9.1 12 56 2.73E-03 5.29E-06 1.87E-05 3.00E-05
ENSG00000240371 RP11-624G17.1 11 56 2.82E-03 5.76E-06 1.66E-05 3.06E-05
ENSG00000130021 HDHD1 X 54 1.58E-03 4.20E-06 3.77E-05 9.29E-05
ENSG00000243663 RP11-21K20.1 12 48 2.10E-03 7.33E-06 2.88E-05 4.67E-05

p-values. Similar p-values from the verification split provided the verification data.

A mixture of a Uniform and a Beta distribution was fitted to the training data p-

values and was adjusted to get the empirical fit as described in Subsection 2.2.1. The

training fit then was used to calculate the tail-area Fdr associated with the p-value

in the verification data for each gene. Genes with Fdr less than 0.01 were detected

as significantly differently expressed between male and female subjects. The process

was repeated 100 times.

100 sample splits and subsequent screening detected a total of 83 significant genes
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out of 17, 310. Table 2.3 present a partial summary of the detection results. Of these

83 detected significant genes, 56 appeared more than once in the 100 repetitions of

the splitting and screening. Especially, the top significant gene XIST (X inactive

specific transcript) is known to be expressed only in females, which works to suppress

the other pair of X chromosome and then balance the population between females

and males. And most frequently detected significant genes appear on the Y or X

chromosomes, which is expected since they are differentially expressed between males

and females.
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(a) F-network for top 19 significant genes
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(b) F-network for top 14 significant genes

Figure 2.6: F-network for the most significant genes appearing more than 70 times
in (a) and more than 90 times in part (b). The Fdr threshold is at 0.01.

Figure 2.6 shows the F-network plot for most significant genes. Since we are using

p-values for the analysis, detected genes cannot be flagged as over-expressed or under-

expressed (unlike LTA values), but can only be detected as significantly differently

expressed in female subjects compared to male subjects. Therefore the color schemes

of Figure 2.4 is absent in Figure 2.6. Each node represents a gene, and the gray link

between nodes represents the pair of genes are simultaneously differentially expressed.

In figure 2.6(a), most of the inner clustered genes comes from the top significant genes
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from the table 2.3, and the more outward the nodes in the frequency network, the

lower the occurrence of those being differentially expressed.

2.3.3 A Simulation Study.

We used simulated data to study the relative efficiency of the proposed method.

The data consisted of a treatment group of 50 subjects and a control group of 50

subjects independent from the treatment group. 1000 expressions were simulated for

each of these 100 subjects. Out of the total 1000 variables, the first 30 were set to

be the nonnull cases (expressions were simulated from distributions different for the

treatment and control groups); while the last 970 variables were set to be the null

cases (expressions were simulated from the same distribution for the treatment and

control groups).

Further, to show that the F-network plots constructed using the detection fre-

quencies can pick up an existing inter-relationship between screened cases, we added

a correlation structure among the first 10 non-null variables. For a gene expression

study if some genes are inter-related with each other they will work in tandem in any

subject no matter whether from the control or from the treatment group, although

their expression levels can be different between the two groups. Keeping that in

mind, for the simulated data the same correlation structures were applied to both

the treatment and the control group while keeping the non-null means different in

the two groups.

We used the normal distribution for the simulation. The N(6, 2) distribution was

used for all 970 null variables for each subject in the treatment and the control group.

The normal distribution parameters used to simulate the 30 non-null variables are

described in Table 2.4. The 100 subjects were randomly split into a training and

a verification set, each consisting of 25 subjects from the treatment group and 25

subjects from the control group. The data points were defined as xi = P (t < ti),
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Table 2.4: The simulation parameters for 30 non-null variables. Here 10 values for
µc1 were generated from a N(5, 1) distribution, one for each of the variables 11 to 20
in the treatment group. Similarly, 10 values for µc2 were generated from a N(7, 1)
distribution, one for each of the output variables 21 to 30 in the treatment group.

Output Variables
Mean

Variance
(treatment and control)

treatment control

{1, 2} (7, 7)′ (6, 6)′ 2 ∗
[

1 0.8
0.8 1

]

{3, 4} (5, 5)′ (6, 6)′ 2 ∗
[

1 −0.8
−0.8 1

]

{5, 6, 7} (7.5, 7.5, 7.5)′ (6, 6, 6)′ 2 ∗

 1 0.75 0.8
0.75 1 0.9
0.8 0.9 1



{8, 9, 10} (4.5, 4.5, 4.5)′ (6, 6, 6)′ 2 ∗

 1 −0.85 −0.9
−.85 1 0.61
−0.9 0.61 1



{11, 12, . . . , 20} (independent) µc1 6 2

{21, 22, . . . , 30} (independent) µc2 6 2

where ti is the two-sample t-test statistic for each output variable from the 25 control

and the 25 treatment samples in the training split. Then a mixture of a Uniform and

a Beta distribution was fitted to the training split xi’s and was adjusted to better

capture the background and the signal similar to (2.4) in Section 2.3.1. Figures 2.7(a)

and 2.7(b) show a fit from one particular training split.

Here we used tail-area Fdr screening to construct the frequency table 2.5 and the

F-network plots 2.9. The local fdr screening results are used for comparison purposes

in Figures 2.10 and 2.11.
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Table 2.5: 26 most frequently detected significant variables from 100 sample split
data sets with the tail-area Fdr< 0.1 (detection frequencies 2 or higher). The third
column indicates the frequency of occurrence for the corresponding variable (i) in the
100 cross validations. The columns med.x, avg.x and sd.x are the median, mean and
standard deviation of the LTA’s x for each variable computed from 100 randomly
chosen verification data sets.

variable (i) freq med.FDR med(x) avg(x) sd(x)
8 63 3.66E-02 6.05E-05 5.85E-04 1.53E-03
5 45 4.46E-02 1.00E+00 9.99E-01 1.46E-03
10 44 3.74E-02 4.03E-04 2.66E-03 8.62E-03
6 41 4.69E-02 1.00E+00 9.99E-01 2.16E-03
7 38 5.29E-02 1.00E+00 9.99E-01 3.03E-03
15 36 4.49E-02 5.11E-04 3.99E-03 1.05E-02
26 34 5.28E-02 1.00E+00 9.98E-01 3.62E-03
21 22 5.03E-02 9.99E-01 9.96E-01 1.45E-02
9 20 4.85E-02 2.13E-03 1.04E-02 1.89E-02
16 17 4.82E-02 2.33E-03 1.14E-02 2.41E-02
23 17 5.83E-02 9.98E-01 9.95E-01 1.29E-02
30 17 7.37E-02 9.98E-01 9.93E-01 1.57E-02
29 13 4.63E-02 9.98E-01 9.93E-01 1.86E-02
12 12 4.98E-02 6.48E-03 1.89E-02 3.58E-02
20 10 6.33E-02 5.18E-03 2.02E-02 3.75E-02
11 9 6.04E-02 3.11E-03 1.55E-02 3.76E-02
13 6 6.72E-02 1.67E-02 2.78E-02 3.88E-02
19 6 6.93E-02 9.58E-03 1.91E-02 2.50E-02
4 6 6.72E-02 1.16E-02 2.58E-02 4.41E-02
24 5 4.71E-02 9.97E-01 9.91E-01 1.48E-02
3 5 6.42E-02 8.61E-03 2.27E-02 3.69E-02
106 3 3.14E-02 2.36E-02 4.74E-02 6.81E-02
523 3 4.05E-02 2.28E-02 5.72E-02 1.05E-01
27 2 7.01E-02 9.89E-01 9.68E-01 5.34E-02
508 2 7.17E-02 4.12E-02 7.93E-02 1.00E-01
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(a) Uniform-Beta mixture model.
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(b) Adjusted Uniform-Beta mixture model.

Figure 2.7: The histogram of xi (left-tail-area for the observed two sample t-statistic
for the simulated variables i = 1, 2, . . . , 1000) from a verification data set consisting
of half of the control and the treatment groups respectively. Superimposed on Fig-
ure (a) are the fitted Uniform, Beta and the associated mixture distribution obtained
from the corresponding training split as f̂(x) = 0.923f ∗0 (x) + 0.077f ∗1 (x) where f ∗0
is the Uniform(0, 1) p.d.f and f ∗1 is the Beta(0.341, 0.319) p.d.f. Figure (b) shows
the empirical null fit adjusted from the fitted Uniform-Beta mixture distribution to
f̂(x) = 0.974f̂0(x) + 0.026f̂1(x) as in the equation (2.4).

The two-sample t for each variable in the verification split and its left-tail-area xi

formed the verification data. The training split fit (2.4) was used to obtain the tail-

area Fdr associated with each verification data point xi. The variables with tail-area

Fdr less than 0.1 were detected as significant. The process was repeated 100 times.

The top 26 most frequently detected significant variables are shown in Table 2.5.

Note that, although variables 1 to 30 out of the 1000 simulated variables were

set as non-null, the groups of variables 5, 6, 7 and 8, 9, 10 deviated the most from

the null. The mean vectors for variables 1, 2 and 3, 4 did not deviate enough from

the null mean to produce significantly large or small t-statistic values. The analysis

was done using the t-statistic tail-area and not the original normal distribution, thus

naturally non-null variables 1, 2 were not captured in the screening process.

The F-network plots in Figures 2.9(a) and 2.9(b) show that among the detected
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(a) Full parallel coordinate plot.
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(b) Partial parallel coordinate plot.

Figure 2.8: Parallel coordinate plot for the detected significant variables with the tail-
area Fdr less than 0.1. Each tick mark on the horizontal axis represents a significant
variable, and the vertical axis shows the left tail-area x from the two sample t-statistic
obtained from each of the 100 verification splits. Figure (a) is a full profile for all of the
detected significant variables and Figure (b) is the plot for the 10 most significantly
different variables.
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(a) F-network for top 26 significant variables.
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Figure 2.9: Figure (a) is the F-network plot of 26 significant variables appearing at
least twice in the 100 sample splits by using the tail-area Fdr≤ 0.1. Figure (b) is
the simplified network of Figure (a) by deleting variables with less than 5 connected
edges.

64



www.manaraa.com

significant variables, the groups with strongest correlation structure, one with vari-

ables 5, 6 and 7 and another with variables 8, 10 (variable 9 had a smaller correlation

coefficient 0.61 in the group), were captured successfully.

To compare the efficacy of the proposed method with the whole data fit/screening,

we present the following power (recall) (2.8) and precision (2.11) comparison in Figure

2.10. Since Efron (2007) used the local fdr for screening, for comparison purposes with

repeated sample splitting, the combined rejection region based on local fdr screening

as in (2.12b) is used in Figure 2.10 along with the rejection region from the whole

data fit and local fdr screening method.
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(a) Power curve comparison.
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(b) Precision curve comparison.

Figure 2.10: Figure (a) is the power curve comparison and Figure (b) is the precision
curve comparison between the whole data fit/screening method and the proposed
sample splitting method. Here q is the cutoff point of the local fdr. The solid line
represents power or precision using the whole data fit/screening method and the
dashed line represents the same using the sample splitting method.

The combined rejection region from repeated sample splits results in a larger

rejection region hence providing higher power as evident in Figure 2.10(a). But the

inclusion of all detections increases the number of false discoveries and consequently

decreases the precision as seen in Figure 2.10(b). However, we are proposing that

only the variables with high detection frequencies should be screened as potential
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true discoveries and not the entire R(q) as presented in Figure 2.10. Eliminating

these variables should increase the precision. For example, in case of the tail-area Fdr

screening 21 of 26 detections (about 81%) in Table 2.5 with detection frequencies of 2

or higher were true discoveries. If variables with detection frequency 5 or higher are

considered, all 21 detections are true discoveries (100%) (recall that in the simulation,

variables 1 to 30 were non-null and 31 to 1000 were null).

From Figure 2.10(b), note that even when the entire R(q) was used with the pro-

posed method as the rejection region, at relevant q values 0.1 to 0.3 (reasonable cutoff

points for local fdr) the sample splitting technique shows a level of precision that is on

par with the whole data fit/screening method. By adding a high frequency criterion

to the combined rejection region, the precision is expected to improve, whereas with

enough repeated sample splitting, the set of variables in R(q) with high frequencies is

unlikely to get much smaller compared to the rejection set produced by the existing

methods. In other words, with sufficiently large repetition of sample splitting, the

high frequency screening is expected to increase precision without significant loss of

power.

Figure 2.11 shows the power and precision comparison between the tail-area Fdr

screening and the local fdr screening used with the sample splitting technique. More

precisely it compares the performances of the analyses between screening methods

i.e,

• With the tail-area Fdr; when the theoretical rejection region is obtained using

(2.12a).

• With the local fdr; when the theoretical rejection region is obtained using

(2.12b).

The tail-area Fdr screening is expected to provide a larger rejection region at the

same critical value q. Consequently the gain of power in Figure 2.11(a) is larger when
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Figure 2.11: Figure (a) is the power comparison between the tail-area Fdr and the
local fdr screening used with sample splitting. Figure (b) is the precision comparison
of the same. The dashed line shows power and precision when the tail-area Fdr was
used for the screening. The solid line represents power and precision when the local
fdr was used for the screening. The probabilities are calculated as a function of the
local fdr or the tail-area Fdr cutoff point q, to obtain the corresponding combined
rejection region R(q) from 100 sample splits as Equations (2.12a) or (2.12b).

the tail-area Fdr is used as opposed to the local fdr screening. But subsequently

the tail-area Fdr screening reduces the precision or increases the percentage of false

discovery at the same q as seen in Figure 2.11(b). However, while applying the sample

splitting we are using only half of the available information for model building and

that is bound to cause some loss of power compared to when the full data is used

for the model fitting. For that reason we favor the tail-area Fdr screening with the

sample splitting method. Since as evident from the frequency of detection Table 2.5,

precision can be greatly improved by considering only the high frequency cases for

potential true discoveries.

Figure 2.12 shows type I and type II errors as functions of cutoff points q for the

tail-area Fdr screening calculated from the simulated data following steps described

in Section 2.2.3. This may help in the choice of appropriate cutoff point q for the

main analysis.
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(a) Type I and II errors.
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(b) ROC curve for Type I and II error.

Figure 2.12: The solid line represents Type I error and the dashed line represents
Type II error as in Equations (2.9) and (2.10). The error probabilities are calculated
as a function of tail-area Fdr cutoff point q with the rejection region in the Equation
(2.12a).

2.4 Discussion

Sample Splitting: In a multiple testing situation, if the entire available data is used

for the fitting of a contamination model (null, non-null mixture), then using the same

data for the non-null detection may cause a feedback loop. The sample splitting in

the proposed method allows a part of the available information to be used for model

building and the other part for screening significant cases, and hence avoids that

drawback. Further, when the data is randomly split multiple times it produces a

different (may not be disjoint) training set each time. When models are fitted based

on these different training splits, it helps to neutralize the effect of sources of variation

(noise) other than the one that is of interest in a study.

The use of only partial information for the model building part may lead to

some loss of power for an individual training set, but repeated sample splitting and

combining the resulting rejection regions overcomes that. However, the combined

rejection region also accumulates false discoveries and reduces precision. Using cases
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with high detection frequencies for screening with enough repetition of splits can

balance out the power and the precision.

F-Network Plots: The other benefit of the repeated sample splitting is the fre-

quency network or F-network plots that are constructed based on the detection fre-

quencies across the repeated splits. Here we want to emphasize that the F-network

plots generated by using this method should not be used as a “proof” of group be-

havior among the cases. If two unrelated non-null cases deviate strongly from the

null distribution, they are bound to be frequently detected as significant, no matter

how the data is split. In that case these two unrelated non-null cases may appear in

the detected sets repeatedly at the same time and consequently will show up in the

F-network plot as a group. Therefore, the F-network plot is not intended to be used

as a basis for a causal relation.

However, the simulation study shows that if some screened non-null cases are

indeed correlated, that relation is captured in the group structure of the F-network

plot. Thus we recommend that these plots to be used as an exploratory tool that

precedes further investigation to establish possible causal relationships between cases

that show high concurrent detection frequencies in this method. When a study in-

cludes thousands of cases, at least some starting point for an exploratory network

analysis can be highly useful and cost-effective.

The relevance and effectiveness of the proposed method can be explained partic-

ularly well in microarray analysis where the main goal is the identification of groups

of differentially expressed genes. These types of studies are commonly used to iden-

tify the genes that are associated with a specific biological behavior. Genes detected

through the proposed methodology can be isolated for detailed follow-up functional

studies. For example, a biologist may look into the few most frequently identified

significant genes to distinguish the “regulators”. A systematic gene knockout experi-

ment, conducted on the sets that appear in the F-network plot as a group, can reveal
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the effect of individual genes on the biological response of interest. This can provide

a novel starting point for the elucidation of gene networks or hierarchical regulation

patterns in a biological system. Thus, the proposed analysis can guide an exploratory

biological study where, instead of experimental investigations of the effect of every

gene, a small subset of significant ones can be selected for further experimentation to

establish their individual or collective role in the biological response of interest.

Conditional Independence: An interesting question can be posed: “when does

the empirical Bayes model (2.1) work?” It of course works when the observations are

i.i.d according to (2.1). But in many cases (in particular, the microarray example

considered here), it is not correct. It does work, though, in pooling observations

where the observations are conditionally independent. For example, in a microarray,

clusters of genes may be acting together but still conditionally independent. This is a

typical argument used in multiple hypothesis testing cases (Karlin and Taylor, 1981).

Pooling Data: In situations where we have clusters of observations and within

a cluster the observations are conditionally independent, pooling of the observa-

tions can result in the observations being i.i.d. from the pooled/mixed distribution

model. Grego et al. (1990) were one of the first to suggest the use of mixed distri-

bution methodology to analyze such data when the observations are exponentially

distributed. Here we provide a justification of this type of analysis for more compli-

cated situations such as the one considered in this paper.

To see this, consider k clusters, where there are ni observations, Xi,1, . . . , Xi,ni in

cluster Ci. Consider the situation where the joint density of all the observations can

be written as

g(I)
k∏
j=1

[ nj∏
m=1

f (xj,m|λj,m) gj,m (λj,m| Ij)
]

(2.14)

where I = (I1, . . . , Ik) is a vector of indicator variables indicating if the clusters are

in the background state (Ij = 0) or in the signal state (Ij = 1). Note that, if g(I) =
k∏
j=1

g(Ij) (the indicator variables are independent), then the X ′s are independent.
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For example, a cluster might be a biological network of genes where the indicator

I = 0 denotes that the genes in the network are not being differentially expressed

and any expressed genes are simply background while if I = 1 the network is being

differentially expressed (signal). Typically, we do not know the clusters/networks and

are simply pooling the data. Thus, from (2.14)

{(Xj,m,Λj,m)} given I are independent. (2.15)

Notice that this is almost an empirical Bayes or a mixture model formulation except

that the distributions of the observations are not identically distributed.

However, notice that, given (I,Λ), the conditional distribution of the X’s is given

by Xj,m|(I,Λ) ∼ f(xj,m|Λj,m). Thus, if we pool the data, then, given (I,Λ), the

resulting X’s have marginal mixed density,

f(x) =
∫
f(x|λ)m(dλ) (2.16)

with support Λ where the point masses are determined by {gj,m (Λj,m| Ij)}. That

is, we are observing X’s for each gene from marginal density (2.16), where they can

be considered conditionally independent in the pooled data. Thus, given (I,Λ), and

(2.15) the form of (2.16) justifies the use of the mixture distribution/empirical Bayes

that we developed.

2.5 Conclusion

In conclusion, we present a method that can be used for identifying significant cases

when carrying out a large number of simultaneous tests. We propose a cross-validation

type analysis where a part of the available information goes into the understanding

of the underlying process or model fitting while the other part goes into screening

for extreme cases. Random splitting and repeated screening provide a way to reduce

the noise (other sources of variation) in the analysis and as a by-product we get an

exploratory look into the network pattern for significant cases.
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Chapter 3

Sparse Regulatory Network Between

microRNA and mRNA By Using Weighted

P-value Approach1

3.1 Introduction

Chronic Obstructive Pulmonary Disease (COPD) is a progressive fatal lung dis-

ease with the potential for major complications and is often eventually fatal (Erb-

Downward et al., 2011). COPD is characterized by chronically poor airflow caused

by an inflammatory response in the lungs resulting in narrowing of the small airways

and breakdown of lung tissue known as emphysema. It typically worsens over time

and a major cause of disability, and it is the third leading cause of death in the U.S

(Mannino and Buist, 2007). Although chronic exposure to smoking, pollutants, etc

is known to be closely related to the onset of COPD, the precise mechanisms for the

development of this disease have been not fully understood yet.

Recent studies showed that epigenetic alteration is associated with peripheral

muscle dysfunction of COPD patients (Barreiro et al., 2005), and several microR-

NAs are associated with the development of this lung disease (Angulo et al., 2012,

Hayashita et al., 2005). MicroRNAs are endogenous and small non-coding RNAs

of approximately 21 to 25 nucleotide single-stranded RNAs. MicroRNAs regulate

gene expression and it was initially thought that the alteration of microRNAs is as-

1Chong Ma, Yen-Yi Ho, Stephanie Christenson, Richard Nho. To be submitted to Bioinformatics
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sociated with cancer development (Volinia et al., 2006). However, numerous studies

demonstrated that microRNAs are also associated with various human diseases such

as cardiovascular disease, idiopathic pulmonary fibrosis (IPF) (Corsten et al., 2010,

King Jr et al., 2011), and several microRNAs are known to be deregulated in COPD

patients. Furthermore, microRNA signature becomes altered based on the severity

of COPD, suggesting that the alteration of microRNAs might be closely linked to

the severity of COPD. Thus, defining the role of microRNAs in regulating their tar-

get mRNAs in non-severe to severe emphysema is highly imperative to understanding

COPD pathogenesis and potentially aiding designing a molecular target for the treat-

ment of COPD.

Christenson et al. (2013) profiled the association between microRNAs and em-

physema severity by adjusting the fixed effects of different regions of the lung and

random effect of subjects. Nonetheless, we are interested in studying the relationship

between the alteration of microRNAs and emphysema severity by integrating gene

information and patient demographic information together for gaining more power

and removing potential confounding effects.

In this chapter, the goal of our study is to integrate microRNA, mRNA expres-

sions, emphysema severity, and patient demographic information, for establishing a

direct link between the alteration of microRNAs for mRNA regulation and emphy-

sema severity in patients. We analyzed the association between mean linear intercept

(Lm), a measure of alveolar destruction for lungs and microRNAs using a novel

weighted p-value procedure. We obtained the weight-adjusted p-values for 397 miR-

NAs and further explored their association with genes altered in emphysema severity.

Our results showed that 33 microRNAs are significantly associated with the changes

in no emphysema to severe emphysema. Moreover, our approach enabled us to iden-

tify the potential regulation network between the significant microRNAs and their

associated mRNAs in emphysema severity. We propose that our approach to find
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the direct relationship between severity of emphysema and mRNA changes by the

alteration of microRNAs can be potentially applicable for understanding microRNA

profiles in an individual patient and useful for the COPD patient-specific treatment

in the future.

3.2 Methods

3.2.1 COPD Data

The data we used were obtained from Christenson et al. (2013), which consist of mul-

tiple specimens in different lung regions from 8 subjects. Six subjects had undergone

lung transplantation for severe COPD and two subjects were donors without COPD.

For each subject, paired samples were taken from different regions varying from apex

to base in the lung. One sample was used to measure the emphysema severity by

the mean linear intercept (Lm), and the adjacent sample was used to measure the

397 microRNA and 22, 011 mRNA expression levels. However, several samples from

certain subjects were dropped for quality control reasons and in total, only 57 samples

have the mRNA gene expression levels. Additional information on the subjects is also

available including the COPD, age, gender, etc. The microRNA and mRNA expres-

sion profile datasets are available in Gene Expression Omnibus (GEO) for which the

GEO accessions are GSE49881 and GSE27597, respectively.

Figure 3.1 illustrates the log emphysema severity (log(Lm)) from apex (slice 2)

to the bottom (slice 13) in the lung for the 8 subjects in the data. Patients with

COPD have higher emphysema severity than donors without COPD generally, al-

though log(Lm) demonstrates subject-specific variations and variations in different

lung regions, provided that it assumes a linear relationship between log(Lm) and the

position of slices in the lung. Taking into account the missing values in various slices

of the lung for subjects, we propose to fit the data by using the linear mixed model

by dealing the measures of different slices in the lung as repeated measures.
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Figure 3.1: Spaghetti plot for log(Lm) with lung regions (slices) for each subject.
Slice 2 is the apex in lung and slice 13 is the bottom in the lung. Subject 1 to 6
represent patients with COPD and subject 7 and 8 represent donors without COPD.
The spaghetti plot shows a pattern of random intercept log(Lm) for subjects and the
overall mean log(Lm) for COPD patients is higher than that for healthy donors.

3.2.2 Methodology

In this paper, we aim to study the association between miRNA and the emphysema

severity (Lm) by integrating the mRNA gene information and other important covari-

ate variables. In the analysis, our goal is to identify genetic connections depicted in

Figure 3.2. Figure 3.2 indicates miRNAs associated with the emphysema severity by

regulating mRNA gene expressions. Put in another way, if a miRNA is significantly

associated with a mRNA (Link I) and that mRNA is also significantly associated

with the emphysema severity, then it improves power to detect the association be-

tween the miRNA and the emphysema severity by carrying out the weighted p-value

approach (Roeder and Wasserman, 2009). Meanwhile, it has a potential to unveil
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how microRNAs regulate COPD-associated gene expression network that underlies

the emphysema severity.

mRNA

miRNA Lm

I II

Figure 3.2: The assumed biological pathway amongst microRNA, mRNA and Lm.
miRNA is short for microRNA.

Ho et al. (2014) proposed a novel weighted procedure motivated by Roeder et al.

(2006) to integrate gene expressions in GWA analysis by gaining more power while

controlling the familywise error rate (FWER) at the nominal level α. In this study,

we integrate mRNA gene expression profiles and other important covariate variables

for detecting significant COPD-associated miRNAs by implementing the weighted

p-value procedure. Moreover, we obtain a regulation network between the significant

miRNAs and a group of mRNAs (genes) selected by thresholding the weights at a

certain quantile. In the COPD data set (Christenson et al., 2013), besides miRNA and

mRNA expression levels, there are five important covariate variables available for the

8 subjects. For notation simplification, denote by x1 = COPD, x2 = packyears, x3 =

age, x4 = sex, x5 = slices and lLm = log(Lm). Taking the natural log transformation

for Lm is beneficial for eliminating the effect of non-normality of the emphysema

severity (Lm).

For the sake of model interpretability and avoiding overfitting, we select a best

parsimonious model for fitting lLm on the covariate variables, before integrating the

miRNA and mRNA expression levels into the selected model. The exploratory anal-

ysis implies the existence of nonlinear relationship between packyears, age and lLm.

Therefore, we use truncated polynomial basis functions with degree 1 for packyears

and age, where the knots are at age = 61 and packyears = 25 based on the ex-
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ploratory study, respectively. At the end, the selected model with the minimum AIC

is as follows,

lLm = u+ β0 + β1x1 + β2x2 + β3(x2 − 25)+ + β4x3

+ β5(x3 − 61)+ + β6x4 + ε

= u+ x′β + ε (3.1)

where x = (1, x1, x2, (x2 − 25)+, x3, (x3 − 61)+, x4)′ where β = (β0, β1, β2, β3, β4, β5)′

contains the corresponding fixed effects. Note that u is the random intercept indicat-

ing subject-specific effects illustrated in figure 3.1.

Now we apply the weighted p-value procedure in (Ho et al., 2014, Roeder et al.,

2006) to integrate the miRNA and mRNA expression profiles into the parsimonious

model (3.1), for discovering significant COPD-associated miRNAs. We illustrate the

procedure in three steps as follows.

lLm = u+ x′β + ε, (3.2)

lLm = u+ x′β + βmiRj ,LmmiRNAj + ε, (3.3)

Step 1. Obtain p-values for 397 miRNAs, denoted by pj, j = 1, 2, . . . , 397, using

likelihood ratio test by comparing the linear mixed effect model (3.2) and model (3.3).

mRNAk = u+ x′β + βmiRj ,mRkmiRNAj + βlLmlLm + ε (3.4)

lLm = u+ x′β + βmRk,lLmmRNAk + βmiRjmiRNAk + ε (3.5)

Step 2. Calculate the weight matrix W in which each element wjk represents to

the extent that the jth miRNA is associated with the emphysema severity lLm by

regulating the kth mRNA. The weight matrix W is by 397× 22011, where each row

represents a miRNA and each column represents a mRNA. The formula for wjk is

wjk =
 β̂miRj ,mRk

SE(β̂miRj ,mRk)

2

︸ ︷︷ ︸
wmiRjmRk

×

 β̂mRk,lLm

SE(β̂mRk,lLm)

2

︸ ︷︷ ︸
wmRklLm
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By Theorem 3.2.2, pj is independent of wmiRj ,mRk and wmRk,lLm, respectively, thus

pj is independent of the weight wjk. It also makes sense since we remove the effect

of lLm in model (3.4) and the effect of miRNAk in model (3.5) respectively so that

wmiRj ,mRk and wmRk,lLm have no association with pj. Because pj is independent with

wjk for any k, then it makes pj independent of the weight wmiRj = max
k

wjk which is

proposed in step 3. The independence between pj and wmiRj is crucial to guarantee

the success of the weight-adjusted p-value of approach for controlling the familywise

error rate at level α.

Step 3. Calculate wmiRj = max
k

wjk and assign the average scaled weight w∗miRj =
wmiRj
c

to the jth miRNA, where c = E(wmiR) and wmiR = 1
m

∑m
j=1 wmiRj is the average

of all wmiRj . By Theorem 3.2.2, the rejection set R = {j : pj
w∗miRj

< α
m
} can control

the familywise error rate at level of α, since w∗miR>0, pj ⊥⊥ w∗miR, and the average of

all weights w∗miR is 1. Since the distribution of wmiR might be complicated, we use

the observed value to replace the expected value as an ad hoc approach. In fact, that

the average of w∗miRj is 1 is required to control familywise error at level α (Roeder

and Wasserman, 2009).

Theorem 3.2.1. Assume that (Y,X) is a random data matrix from N(µ,Σ) where

Y = (Y1, Y2, Y3) and X = (X1, . . . , Xp). Note that Yi, Xj are N ×1 vectors. Consider

the following regression models

Y3 = β13Y1 +Xβ + ε

Y2 = β12Y1 + β3Y3 +Xβ + ε

Y3 = β23Y2 + β1Y1 +Xβ + ε

where ε ∼ N(0,Σ). Let F13, F12, F23 denote the F-statistics for the significance of

β13, β12, β23 in the corresponding models. Then, F13 is independent of (F12, F23).

Theorem 3.2.2. Let H = {H1, . . . , Hm} be a set of hypotheses, where Hj = 0

represents null and Hj = 1 for significance. Denote by H0 = {j : Hj = 0} the
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set consisting of the true nulls. Suppose that Wj > 0, j = 1, 2, . . . ,m are random

variables following some known distributions, Pj is independent of Wj for all j ∈ H0,

and c is a constant such that c = EH(W̄ ) where W̄ = 1
m

∑m
j=1 Wj. Then the rejection

set R = {j : Pj < αWj

mc
} controls the familywise error rate at level α.

The weight-adjusted p-value for the jth miRNA for demonstrating the statistical

evidence of the association between the miRNA and Lm is pj
w∗miRj

. Here we use the

maximum of the “crude” products of the two likelihood ratio test statistics, that is

wmiRj = max
k

wmiRj ,mRk × wmRk,Lm as the weight to scale the “raw” p-value pj for

the significance of the jth miRNA in model (3.3). It makes sense to use a product

because wjk would become substantial while both of the two statistics wmiRj ,mRk and

wmRk,Lm are big enough simultaneously. If merely one of the two statistics is massive

and the other is slight, then the product of the two statistics wjk would be not so

significant, which adjusts the raw p-value sensibly. In order to gain as much power

as possible, we propose to use max
k

wjk as the weight.

There are definitely other ways to define the weight w∗miRj by specific interests

and purposes. In Table 3.1, we compare the way of taking the maximum of the

“crude” products of wmiRj ,mRk and wmRk,Lm across all mRNAs and the way of taking

the average of them, that is wmiRj = avgkwmiRj ,mRk × wmRk,Lm.

In the linear mixed models (3.1), (3.2), (3.3), (3.4) and (3.5), x′β and u have

played the same roles in these according models, the fixed effects of COPD, pack-

years, age and sex and the random intercept effect caused by lung regions (slices),

respectively. By integrating the miRNA and mRNA expression profiles in these mod-

els, the weighted p-value procedure could gain more power in detecting the signals

for miRNA associated with COPD by regulating mRNA and adjusting associated

fixed and random effects, while controlling familywise error at the nominal level α

(Ho et al., 2014).

79



www.manaraa.com

Table 3.1: 33 miRNAs with weight-adjusted p-values (p-values) ≤ 0.05. p.value is
calculated from the linear mixed effect models (3.2) and (3.3) by using likelihood
ratio test. Weight1 and Weight2 are weights following the formula wmiRj = maxk wjk
and wmiRj = Avgk(wjk). Padj1 and Padj2 are adjusted p-values by scaling p.value by
according weight.

miRNA Estimate p.value Weight1 Padj1 Weight2 Padj2 mRNA
miR-133a 0.50 1.73e-04 1.37 1.26e-04 1.17 1.48e-04 PENK,GPRC6A,HIST2H2BE,PHC1
miR-122 0.40 8.51e-04 3.55 2.40e-04 4.20 2.03e-04 ENGASE,SLC25A45,IL2
miR-137 0.40 3.30e-03 0.54 6.11e-03 0.67 4.94e-03 NEFH,VSNL1,FLJ45244,FBXO10,NDUFA2
miR-96 0.40 5.07e-03 3.18 1.59e-03 0.86 5.89e-03 DSCR9,UBE2J2,TCP10L
miR-629 0.43 7.46e-03 0.55 1.35e-02 0.58 1.28e-02 MYADM,SERPINE1,C5orf17,VCAN
miR-582-5p 0.44 1.05e-02 0.67 1.57e-02 0.56 1.87e-02 LOC440173
miR-337-3p 0.34 1.06e-02 1.95 5.41e-03 1.84 5.73e-03 XKR8,GYPC,TBX19
miR-362-3p -0.28 1.17e-02 0.98 1.20e-02 0.74 1.59e-02 FRS3,LCE2D,DOCK3,IFNA10
miR-939 0.55 1.25e-02 0.86 1.46e-02 1.16 1.08e-02 CLIC5,SOX4,OTUD6A,OR6A2
miR-374bS 0.36 1.49e-02 2.30 6.46e-03 0.73 2.03e-02 CRMP1,VSNL1,FLJ45244
miR-487b -0.34 1.55e-02 1.27 1.22e-02 2.13 7.25e-03 HSBP1,GLIPR2,DBF4
miR-211 0.24 1.91e-02 1.77 1.08e-02 1.56 1.22e-02 XKR8,SNRPF,C5orf48
miR-19b-2S 0.33 2.13e-02 1.35 1.57e-02 0.48 4.40e-02 CD209,GYPC,XKR8
miR-181a-2S -0.30 2.49e-02 0.82 3.04e-02 0.65 3.83e-02 TTYH1,IL23A,APOA2,MCART1
miR-518c 0.40 2.53e-02 0.66 3.80e-02 0.56 4.52e-02 LHB
miR-578 0.38 2.61e-02 1.84 1.42e-02 0.85 3.05e-02 KLHL12,ZDHHC22
miR-136 0.33 2.83e-02 0.54 5.23e-02 0.47 6.08e-02 C8orf86,MCART1,ZNF133,DIO3-OS
miR-520f 0.31 3.01e-02 0.46 6.62e-02 0.62 4.87e-02 NCRNA00161,MCART1
miR-194S -0.35 3.05e-02 0.64 4.81e-02 0.90 3.38e-02 FLJ46111,VASH2,RERG
miR-924 0.23 3.77e-02 2.11 1.78e-02 0.64 5.87e-02 SSX1,TMCC2,DNAJB7
miR-299-5p -0.30 3.88e-02 2.49 1.56e-02 2.33 1.67e-02 FCHSD1,IHH,CCDC28B,PVRIG
let-7b -0.14 4.32e-02 1.78 2.43e-02 0.71 6.11e-02 ALDH1A2
let-7c -0.14 4.34e-02 1.00 4.35e-02 0.84 5.15e-02 MLL,FBXO17
miR-130aS 0.27 4.42e-02 1.31 3.38e-02 0.91 4.83e-02 MCART1,DGKA,LY9,CD84
miR-593 0.23 4.73e-02 1.16 4.09e-02 1.11 4.28e-02 DIAPH3,PDPN,CEACAM6,RPUSD4,COX5B
miR-10b -0.19 4.75e-02 1.15 4.11e-02 0.71 6.66e-02 FCHSD1,CD22,DOCK3,CHDH
miR-378 -0.19 4.82e-02 1.83 2.63e-02 0.74 6.50e-02 GPR119,PHC1,DKK3,CHST1
miR-505 0.32 4.95e-02 0.60 8.18e-02 0.53 9.26e-02 C8orf86,C3orf10
miR-128a -0.31 5.76e-02 1.63 3.54e-02 0.79 7.33e-02 IRX6,FRS3,VSNL1,CYB5RL
miR-99bS 0.33 7.71e-02 1.75 4.41e-02 1.72 4.49e-02 TOR1AIP1,ATP8A2,GPX1
miR-518b -0.24 8.41e-02 1.59 5.30e-02 3.08 2.73e-02 HNRNPM,CLIC5,ARHGEF10
miR-222S 0.13 9.40e-02 2.40 3.91e-02 3.43 2.74e-02 ZNF174,C19orf30,UCKL1,RCAN2
miR-106aS 0.21 9.82e-02 2.41 4.07e-02 1.63 6.02e-02 MAP2K7,APBA1,IRF2BP1,C5orf48,IMPDH1

3.3 Results

By conducting the weighted procedure in section 3.2.2, we obtain 33 miRNAs which

are significantly associated with emphysema severity (Lm) by adjusting the covariates

including sex, age and pack of cigarettes consumed each year, where the summary

output is listed in Table 3.1. Table 3.1 consists of the miRNA name (miRNA),

coefficient estimate for the corresponding miRNA in the linear mixed model (3.3)

(Estimate) and its associated p-value (p.value), weights and weight-adjusted p-values

and top 5 mRNAs which are most associated with the respective miRNA in terms of
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weight wjk.

We propose two weighting procedures described in section 3.2.2. In Table 3.1,

Weight1 and Padj1 are obtained by using the formula wmiRj = maxk wjk, and Weight2

and Padj2 are obtained by using wmiRj = Avgk(wjk), accordingly. The 33 miRNAs

are selected as long as either of their p.value, Padj1, and Padj2 are less than 0.05.

The last column (mRNA) in Table 3.1 is the top 5 mRNAs that are most associated

with the corresponding miRNA in terms of the weight wjk. Some of mRNAs do

not have annotations though. About one-third of the 33 miRNAs have weights less

than 1 and the left two-thirds have weights greater than 1. Roeder and Wasserman

(2009) pointed out that power is increased when weight > 1 and decreased when

weight < 1. miRNA-122, miRNA-96 and miRNA-229-5p have the top 3 largest

weights. In particular, miRNA-128a, miRNA-9bS, miRNA-518b, miRNA-222S, and

miRNA-106aS are originally not significant because their raw p-values are greater

than 0.05. Because they all have relatively large weights more than 1, their adjusted

p-values render them significant, while controlling the overall familywise error rate

at level 0.05. The distribution of a section of weights for the 33 miRNAs is shown in

figure 3.4.

3.3.1 miR-mRNA Sparse Network

Figure 3.3 illustrates a sparse miRNA-mRNA regulation network, where each node

(miRNA) is connected to the top 5 most associated mRNAs in terms of weight wjk.

Interestingly, there appear several “cliques” of sub-networks among some miRNAs

and mRNAs, in that some mRNAs could be regulated simultaneously by several

miRNAs. This finding could be potentially beneficial to further study the pathogen-

esis of COPD.

miR-133a and miR-378 comprise a small clique which simultaneously regulates

PHC1 on associating with emphysema severity. miR-378 gains more power by weight-
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Figure 3.3: A sparse miRNA-mRNA regulation network in association with COPD.
The nodes represent the 33 significant miRNAs, which are surrounded by their cor-
responding 5 most associated mRNAs in terms of weight wjk. The width of a link
indicates the strength of association between the miRNA and mRNA, that is, the
weight wjk. It shows that several “cliques” of sub-networks among some miRNAs
and mRNAs, which are biologically beneficial to unveil the pathogenesis of COPD.
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ing PHC1 though. PHC1 is a member of the Polycomb group of genes that can

produce a component of a multimeric protein complex that contains EDR2 and the

vertebrate Polycomb protein BMH1 (Pruitt et al., 2008). PHC1 is identified as one of

the novel lung genes in the bronchial epithelium that is under-expressed for smokers.

More interestingly, miR-378 has a negative relationship with emphysemas severity

overall, indicating that miR-378 is a putative regulator for PHC1 in COPD.

It appears that miR-211, miR-19b-2S, miR-211 and miR-106aS comprise another

clique which regulates genes GYPC, XKR8 and C5orf48 together. miR-211, miR19b-

2s, and miR-337-3p are strongly associated with the severity of emphysema by tar-

geting XKR8 and GYPC. XKR8 can promote phosphatidylserine exposure on the

apoptotic cell surface, possibly by mediating phospholipid scrambling (Suzuki et al.,

2013). XKR8 plays an important role in chronic lung inflammation by controlling

apoptotic cell clearance (Grabiec and Hussell, 2016). Besides, miR-106aS is bol-

stered to be significant by the weighted procedure in which MAP2K7 contributes

greatly. Qiu et al. (2017) finds that the p.Glu116Lys rare variant in human mitogen-

activated protein kinase kinase 7 (MAP2K7) increases the risk of developing COPD,

which could behave as a genetic biomarker for COPD in Chinese. It coincides with

our study result that miR-106aS associates with emphysema severity by regulating

MAP2K7.

A larger clique is constituted by miR-299-5p, miR-10b, miR-362-3p, miR-128a,

miR-374bS and miR-137, regulating several genes such as FCHSD1. FCHSD1 is

related to the Mammalian target of the rapamycin kinase (mTOR) pathway which

could result in inducing dyskinesia in the treatment of Parkinson’s disease. In the

gene set enrichment analysis (GESA), Table 3.2 shows that the COPD-associated

genes are related to Parkinson’s disease. It might be interesting to further study

whether FCHSD1 is somehow functional in the development of COPD as well. PVRIG

and CCDC28B also have a large association with miRNA-299-5p. PVRIG is signifi-
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cantly down-regulated by human rhinovirus (HRV) infection and HRV alterations of

pulmonary epithelial cells are associated with COPD exacerbation (Etemadi et al.,

2017). CCDC28B is found to be associated with airway ciliary dysfunction in animal

models (Ware et al., 2011). Moreover, CCDC28B is identified as a second site modi-

fier of Bardet-Biedl syndrome (BBS) encoding a protein which affects ciliogenesis in

cultured cells in zebra fish (Cardenas-Rodriguez et al., 2013). Though there is no

substantial evidence on the relationship between BBS and COPD, it could be ben-

eficial to investigate the functional insights on the cellular basis of CCDC28B effect

in COPD patients.

miR-505, miR136, miR-520f, miR-130aS, and miR-181a-2S constitute another

clique by mainly regulating MCART1 together. MCART1 is found on chromosome 9

(Pruitt et al., 2008) that is intronless and may be an evolving pseudogene. Because

it is transcribed and it contains a full-length coding region, it is currently classified

as a protein-coding locus but there is less study on the functioning of its encoded

proteins.

In addition to the several cliques illustrated in figure 3.3, there are more isolated

miRNAs regulating some genes on their own. miRNA-122 gains the largest power

by the weighting procedure, in which IL2 is the third largest associated gene with

miRNA-122. Rybka et al. (2016) identified IL2 as a putative inflammatory agent

resulting in the depression symptom in COPD patients. ZNF174 plays a vital role

in weighting miRNA-222S for gaining more power, and ZNF174 is found to be sig-

nificantly expressed with sarcoidosis severity (Zhou et al., 2017) and also related to

obliterative bronchiolitis in an animal model (Dong et al., 2015).

3.3.2 miR-mRNA Heatmap

Figure 3.4 illustrates a weight submatrix of miRNA by mRNA by 33 × 758, where

rows represent the 33 significant miRNAs and columns represent the 758 mRNAs
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which are the combined top 5 mRNAs that are most associated with each of the

overall 397 miRNAs in terms of the weight wjk. Each pixel in Figure 3.4 represents

the weight wjk for the jth miRNA and kth mRNA, displayed by using the spectrum

varying from white through shades of gray. A dark condensed ribbon implies that the

weight wmiR used for adjusting the p-value is large. Like miRNA-122, miRNA-337-

3p, miRNA-299-5p and miRNA-222S, they all have dark condensed weight ribbons

in Figure 3.4 which coincide large weights in Table 3.1.

miR_106aS
miR_222S
miR_518b
miR_99bS
miR_128a
miR_505
miR_378
miR_10b
miR_593
miR_130aS
let_7c
let_7b
miR_299_5p
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miR_520f
miR_136
miR_578
miR_518c
miR_181a_2S
miR_19b_2S
miR_211
miR_487b
miR_374bS
miR_939
miR_362_3p
miR_337_3p
miR_582_5p
miR_629
miR_96
miR_137
miR_122
miR_133a

0 10 20 30 40 50 60 70 80 90 ≥ 100

Figure 3.4: Weight matrix. Rows are 33 significant miRNAs by thresholding the
weighted p-values (or p-values) ≤ 0.05. Columns are 758 mRNAs which are the
combined top 5 mRNAs that are most associated with the 397 miRNAs. Each value
in the matrix is calculated by the formula wjk for the jth miRNA and kth mRNA,
labeled by the spectrum from white to gray, from the smallest weight to the largest
one.
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3.3.3 miR-mRNA GSEA

For each gene expression, we access their strength of association with both miRNA

and emphysema by summing their corresponding weight through all miRNA using

the miRNA × mRNA weight matrix; we named this gene expression weighted score.

We performed gene set enrichment analysis for the top 145 genes that are regulated by

the 33 miRNAs using KEGG pathway categories. The results of enriched pathways

are shown in Table 3.2 and Table 3.1.

Table 3.2: Enriched KEGG pathway using 145 top genes regulated by the 33 microR-
NAs in table 3.1.

ID PathName P-value Odds Expected
00983 Drug metabolism - other enzymes 0.022 9.588 0.232
05320 Autoimmune thyroid disease 0.023 9.346 0.238
05012 Parkinson’s disease 0.025 5.265 0.633
05014 Amyotrophic lateral sclerosis (ALS) 0.033 7.617 0.288
04630 Jak-STAT signaling pathway 0.043 4.198 0.786

3.4 Discussion

COPD is still a major lung disease characterized by the obstruction of airway flow.

Previous studies suggest that miRNAs are altered in the emphysematous lung of var-

ious severities but the direct connection between miRNAs and their target mRNAs in

various severity degrees of emphysema has been not established yet. In this study, we

addressed this question using a weighted p-value approach by integrating the miRNA

and mRNA genotype information and other important covariate variables including

age, sex, and pack of cigarettes consumed each year. The reason for taking into ac-

count those covariate variables is to remove the potential confounding factors which

might affect the association between miRNAs and mRNAs. We obtained 33 signif-

icant microRNAs which are highly altered in non-severe to severe emphysematous

tissues by adjusting effects of mRNAs and other covariates. The weighted proce-

dure (Ho et al., 2014) used in this paper is more statistically powerful. Furthermore,
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we came up with a sparse miRNA-mRNA regulation network, which has exciting

potential to unveil the pathogenesis of COPD.

Based on our results, it is thought that chromosome and mitochondrion home-

ostasis and apoptosis regulation may be important in the pathogenesis of COPD.

Previous studies documented that miRNA let-7c expression was reduced in patients

with COPD, and the target genes of let-7c were significantly enriched in the spu-

tum of patients with severe COPD and considerably altered in severe emphysema

(Takamizawa et al., 2004). Thus, current study further fortifies the engagement of

several genes that are altered in severe COPD and suggests the involvement of poten-

tial miRNAs that target mRNA expressions based on the progression of emphysema.

In conclusion, our study shows that several miRNAs are altered in severe emphysema-

tous COPD. The confirmation of the level of changes in miRNA and mRNA profiles

at the molecular levels from various degrees of emphysema severity will further aid

in establishing the direct relationship between miRNA alteration and their target

mRNA. MiRNA-based therapy has already been attempted to change the course of

cancer and fibrosis. Therefore, obtaining the precise miRNA signature and their di-

rect role in regulating mRNA can be potentially useful for patients via emphysema

severity-specific treatment.

3.5 Conclusion

Although a prior study suggested that miRNAs participate in COPD development

by changing mRNA expression, the relationship between miRNA alterations and the

regulation of their target mRNAs in various degrees of emphysema severity is not

yet established. To address this, we utilized a new methodology that permits us to

establish 1) whether the progression of severe emphysema from no emphysema alters

miRNA signature, 2) the relationship of altered miRNAs and their target mRNA

changes in emphysema severity within an individual lung. We re-analyzed previous
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data with our new linear mixed model by integrating the miRNA and mRNA geno-

type information and patient demographic information, and we applied the weighted

p-value procedure to gain more power while controlling the familywise error rate

(FWER) at level α. This study permits us to further identify potential alterations of

miRNA/mRNA profiles and whether there is a change of miRNA/mRNA as disease

progression. We demonstrate that 33 miRNAs can regulate mRNA gene expressions

to effect the emphysema severity. More importantly, several miRNAs appear being

strongly significant such as miRNA-133a, miRNA-122, miRNA-137 and miRNA-96

before and after using the weighted procedure. The sparse miRNA-mRNA regulation-

network could be substantially meaningful to further study the emphysema patho-

genesis amongst the miRNAs and mRNAs.

APPENDIX

PROOF OF THEOREM 3.2.1. Under the normal distribution assumption, we have

Fβ13 = (N − p− 1)Y
T

1 (P(X,Y1) − PX)Y3

Y T
3 (IN − P(X,Y1))Y3

Fβ12 = (N − p− 2)Y
T

2 (P(X,Y1,Y3) − P(X,Y3))Y2

Y T
2 (IN − P(X,Y1,Y3))Y2

Fβ23 = (N − p− 2)Y
T

3 (P(X,Y1,Y2) − P(X,Y1))Y3

Y T
3 (IN − P(X,Y1,Y2))Y3

Note that PX is the projection matrix on X. Given (X, Y1), the Fβ13 ∼ F1,N−p−1

does not depend on (X, Y1), hence Fβ13 is independent of (X, Y1). Similarly, Fβ12 is

independent of (X, Y1, Y3), and Fβ23 is independent of (X, Y1, Y2), respectively. Since

Fβ13 is a function of (X, Y1, Y3), then Fβ13 is independent of Fβ12 . Next, we prove Fβ13

is independent of Fβ23 . Denote by

V1 = Y T
3 (P(X,Y1) − PX)Y3

V2 = Y T
3 (IN − P(X,Y1,Y2))Y3

V3 = Y T
3 (P(X,Y1,Y2) − P(X,Y1))Y3
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where V1, V2, V3 represent individual random variables. Because P(X,Y1) − PX , IN −

P(X,Y1,Y2), and P(X,Y1,Y2) − P(X,Y1) are idempotent and orthogonal to each other, by

Craig’s theorem, V1, V2, V3 are jointly independent. Under H0, V1, V2, V3 are from χ2

distributions with different degrees of freedom so that V1 ∼ σ2χ2
1, V2 ∼ σ2χ2

N−p−2, and

V3 ∼ σ2χ2
1, respectively. For ease of notation, denote d = N − p− 2, U = Fβ13 , W =

Fβ23 and Z = V3, accordingly. Since IN−P(X,Y1) = IN−P(X,Y1,Y2) +P(X,Y1,Y2)−P(X,Y1),

then we have the inverse transformation of (V1, V2, V3) in terms of (U,W,Z) such that

U = V1
V2+V3

· (d+ 1)

W = V3
V2
· d

Z = V3

⇒



V1 = 1
d+1UZ( d

W
+ 1)

V2 = Z
W
· d

V3 = Z

And the Jacobian matrix is

J = ∂(V1, V2, V3)
∂(U,W,Z) =


Z
d+1( d

W
+ 1) − d

d+1
UZ
W 2

U
d+1( d

W
+ 1)

0 − dZ
W 2

d
W

0 0 1


Therefore, the joint distribution of (U,W,Z) is

f(u,w, z) = f(v1(u,w, z), v2(u,w, z), v3(u,w, z))|J |

= f1(v1(u,w, z))f2(v2(u,w, z))f3(v3(u,w, z))|J |

∝
(

1
d+ 1uz( d

w
+ 1)

)− 1
2

e−
1
2

1
d+1uz( d

w
+1)×

(
d
z

w

) d
2−1

e−
1
2
dz
w × z−

1
2 e−

z
2 × d

d+ 1
z2

w2 ( d
w

+ 1)

∝ u−
1
2w−( d2 +1)

(
d

w
+ 1

) 1
2

z
d
2 e−

z
2 ( u

d+1 +1)( dw+1)

Hence, the joint distribution of (U,W ) can be obtained by integrating f(u,w, z) over

z, such that

f(u,w) ∝ u−
1
2

(
u

d+ 1 + 1
)− d2

w−( d2 +1)( d
w

+ 1)− d2 +1

∝ fU(u)fW (w)
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That is to say, the joint distribution of (U,W ) can be written as a multiplication of two

disjoint distributions of U and W . Therefore, (U,W ) are independent and then we

prove that Fβ13 is independent of Fβ23 . Overall, F13 is independent of (F12, F23).

PROOF OF THEOREM 3.2.2.

P ((R∩H0) > 0) = P (Pj <
αWj

mc
for some j ∈ H0)

≤
∑
j∈H0

P (Pj <
αWj

cm
)

≤
∑
j∈H0

E(I(Pj <
αWj

cm
))

≤
∑
j∈H0

E{E(I(Pj <
αWj

cm
|Wj))}

≤
∑
j∈H0

E{P (Pj <
αWj

cm
|Wj)}

≤
∑
j∈H0

E(αWj

cm
)

≤ α

c

∑
j∈H0

E(Wj)
m

≤ α
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Chapter 4

Discussion

In this dissertation, we explore novel supervised and unsupervised classification meth-

ods for functional data and high-dimensional data in genomics studies by employing

false discovery rate theory. Supervised and unsupervised classification are common

topics in scientific and industrial fields, which involve three tasks: prediction, explo-

ration, and explanation. False discovery rate theory has a close connection to classical

classification theory, which must be employed in a sophisticated way to achieve good

performance in various contexts.

In Chapter 1, we develop a novel classifier for functional data, which casts the

functional data classification problem as a multiple testing task, and the proposed

classifier is based on statistical depth functions involving the application of false

discovery rate and negative predictive value. Both the simulation studies and real

benchmark data analysis illustrate that our proposed method is competitive with

other classifiers, such as Linear Discriminant Analysis (LDA), Quadratic Discriminant

Analysis (QDA), Support Vector Machine (SVM), and Neural Networks, etc., in the

multivariate and functional contexts. Motivated by the success of studying false

discovery rate in supervised classification, we present novel methods for applying false

discovery rate in unsupervised classification for high-dimensional data. Chapter 2 and

3 essentially deal with the large scale testing problem in genomics studies by using

false discovery rate in different perspectives.

In Chapter 2, we propose a novel algorithm to yield reproducible differential ex-

pression analysis for microarray and RNA-Seq data. In large scale testing problems,
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p-values are usually obtained by using the whole data, which are in turn used to con-

duct the significance screening for all of the hypotheses parametrically or nonpara-

metrically. Our proposed algorithm combines the cross-validation type subsampling

and false discovery rate, where the p-values obtained from the training data are used

to fit a mixture of baseline and signal distributions, which is in turn used to screen

the significance for the p-values obtained from the testing data. In this way, our

proposed algorithm can not only overcome the overfitting issue but is also able to

obtain reproducible significant detections for the large scale hypotheses. The simula-

tion studies illustrate our proposed algorithm is more powerful and flexible than the

general approach of applying the false discovery rate to the whole data once.

In Chapter 3, we propose a novel weighted p-value approach to explore the associ-

ation between microRNAs and COPD emphysema severity by regulating the mRNA

expressions, while integrating patient phenotype information. Our new approach also

enables us to find a sparse regulatory network between the significant miRNAs and

their most associated mRNAs. The simulation study shows that our method is more

powerful than merely using the raw marginal p-values from multiple hypotheses, while

controlling the familywise error rate or false discovery rate. Most importantly, under

the normal distribution assumption, our proposed method can be applied to study

the causality between miRNA and any particular disease, by exploring the precise

role of miRNA in regulating genes.
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